24 research outputs found

    Analysis of the “Sonar Hopf” Cochlea

    Get PDF
    The “Sonar Hopf” cochlea is a recently much advertised engineering design of an auditory sensor. We analyze this approach based on a recent description by its inventors Hamilton, Tapson, Rapson, Jin, and van Schaik, in which they exhibit the “Sonar Hopf” model, its analysis and the corresponding hardware in detail. We identify problems in the theoretical formulation of the model and critically examine the claimed coherence between the described model, the measurements from the implemented hardware, and biological data

    Optically levitated nanoparticle as a model system for stochastic bistable dynamics

    Get PDF
    Nano-mechanical resonators have gained an increasing importance in nanotechnology owing to their contributions to both fundamental and applied science. Yet, their small dimensions and mass raises some challenges as their dynamics gets dominated by nonlinearities that degrade their performance, for instance in sensing applications. Here, we report on the precise control of the nonlinear and stochastic bistable dynamics of a levitated nanoparticle in high vacuum. We demonstrate how it can lead to efficient signal amplification schemes, including stochastic resonance. This work contributes to showing the use of levitated nanoparticles as a model system for stochastic bistable dynamics, with applications to a wide variety of fields.inancial support from the ERC- QnanoMECA (Grant No. 64790), the Spanish Ministry of Economy and Competitiveness, under grant FIS2016-80293-R and through the ‘Severo Ochoa’ Programme for Centres of Excellence in R&D (SEV-2015-0522), Fundació Privada CELLEX and from the CERCA Programme/Generalitat de Catalunya. J.G. has been supported by H2020-MSCA-IF-2014 under REA grant Agreement No. 655369. L.R. acknowledges support from an ETH Marie Curie Cofund Fellowship

    Local cochlear correlations of perceived pitch

    Full text link
    Pitch is one of the most salient attributes of the human perception of sound, but is still not well understood. This difficulty originates in the entwined nature of the phenomenon, in which a physical stimulus as well as a psychophysiological signal receiver are involved. In an electronic realization of a biophysically detailed nonlinear model of the cochlea, we find local cochlear correlates of the perceived pitch that explain all essential pitch-shifting phenomena from physical grounds

    Phase-locking and Arnold coding in prototypical network topologies

    Full text link
    Phase- and frequency-locking phenomena among coupled biological oscillators are a topic of current interest, in particular to neuroscience. In the case of mono-directionally pulse-coupled oscillators, phase-locking is well understood, where the phenomenon is globally described by Arnold tongues. Here, we develop the tools that allow corresponding investigations to be made for more general pulse-coupled networks. For two bi-directionally coupled oscillators, we prove the existence of three-dimensional Arnold tongues that mediate from the mono- to the bi-directional coupling topology. Under this transformation, the coupling strength at which the onset of chaos is observed is invariant. The developed framework also allows us to compare information transfer in feedforward versus recurrent networks. We find that distinct laws govern the propagation of phase-locked spike-time information, indicating a qualitative difference between classical artificial vs. biological computation

    Desired sounds form tuning a complex network of nonlinear Hopf Nodes

    Full text link
    The Hopf Cochlea is hard- and software implemented model of the mammalian hearing sensor that is constructed from a series of feedforward coupled nonlinear Hopf system amplifier sections. The nonlinearity of the Hopf amplifiers removes a superposition principle among the sections. Instead, the sections couple extensively, e.g. by generating combination tones that have been shown to be essential for pitch perception. Here, we demonstrate exemplarily how such a complex network can be tuned for the dedicated amplification of a desired complex sound. Surprisingly, despite the complicated network structure of the cochlea, it is exactly the network's nonlinearity that renders the network simpler tunable than if the cochlea obeyed the superposition principle

    Emergence of intricate dynamical response by supercritical parametrically driven or ringwise coupled subcritical hopf oscillators

    Full text link

    From Hearing to Listening: Design and Properties of an Actively Tunable Electronic Hearing Sensor

    Get PDF
    An important step towards understanding the working principles of the mammalian hearing sensor is the concept of an active cochlear amplifier. Theoretical arguments and physiological measurements suggest that the active cochlear amplifiers originate from systems close to a Hopf bifurcation. Efforts to model the mammalian hearing sensor on these grounds have, however, either had problems in reproducing sufficiently close essential aspects of the biological example (Magnasco, M.O. Phys. Rev. Lett. 90, 058101 (2003); Duke, T. & Jülicher, F. Phys. Rev. Lett. 90, 158101 (2003)), or required complicated spatially coupled differential equation systems that are unfeasible for transient signals (Kern, A. & Stoop, R. Phys. Rev. Lett. 91, 128101 (2003)). Here, we demonstrate a simple system of electronically coupled Hopf amplifiers that not only leads to the desired biological response behavior, but also has real-time capacity. The obtained electronic Hopf cochlea shares all salient signal processing features exhibited by the mammalian cochlea and thus provides a simple and efficient design of an artificial mammalian hearing sensor.ISSN:1424-822

    Parameter properties of biochemical systems

    Full text link
    corecore