14 research outputs found

    Resource Selection and Its Implications for Wide-Ranging Mammals of the Brazilian Cerrado

    Get PDF
    Conserving animals beyond protected areas is critical because even the largest reserves may be too small to maintain viable populations for many wide-ranging species. Identification of landscape features that will promote persistence of a diverse array of species is a high priority, particularly, for protected areas that reside in regions of otherwise extensive habitat loss. This is the case for Emas National Park, a small but important protected area located in the Brazilian Cerrado, the world's most biologically diverse savanna. Emas Park is a large-mammal global conservation priority area but is too small to protect wide-ranging mammals for the long-term and conserving these populations will depend on the landscape surrounding the park. We employed novel, noninvasive methods to determine the relative importance of resources found within the park, as well as identify landscape features that promote persistence of wide-ranging mammals outside reserve borders. We used scat detection dogs to survey for five large mammals of conservation concern: giant armadillo (Priodontes maximus), giant anteater (Myrmecophaga tridactyla), maned wolf (Chrysocyon brachyurus), jaguar (Panthera onca), and puma (Puma concolor). We estimated resource selection probability functions for each species from 1,572 scat locations and 434 giant armadillo burrow locations. Results indicate that giant armadillos and jaguars are highly selective of natural habitats, which makes both species sensitive to landscape change from agricultural development. Due to the high amount of such development outside of the Emas Park boundary, the park provides rare resource conditions that are particularly important for these two species. We also reveal that both woodland and forest vegetation remnants enable use of the agricultural landscape as a whole for maned wolves, pumas, and giant anteaters. We identify those features and their landscape compositions that should be prioritized for conservation, arguing that a multi-faceted approach is required to protect these species

    The state of capacity development evaluation in biodiversity conservation and natural resource management

    Get PDF
    Capacity development is critical to long-term conservation success, yet we lack a robust and rigorous understanding of how well its effects are being evaluated. A comprehensive summary of who is monitoring and evaluating capacity development interventions, what is being evaluated and how, would help in the development of evidence-based guidance to inform design and implementation decisions for future capacity development interventions and evaluations of their effectiveness. We built an evidence map by reviewing peer-reviewed and grey literature published since 2000, to identify case studies evaluating capacity development interventions in biodiversity conservation and natural resource management. We used inductive and deductive approaches to develop a coding strategy for studies that met our criteria, extracting data on the type of capacity development intervention, evaluation methods, data and analysis types, categories of outputs and outcomes assessed, and whether the study had a clear causal model and/or used a systems approach. We found that almost all studies assessed multiple outcome types: most frequent was change in knowledge, followed by behaviour, then attitude. Few studies evaluated conservation outcomes. Less than half included an explicit causal model linking interventions to expected outcomes. Half of the studies considered external factors that could influence the efficacy of the capacity development intervention, and few used an explicit systems approach. We used framework synthesis to situate our evidence map within the broader literature on capacity development evaluation. Our evidence map (including a visual heat map) highlights areas of low and high representation in investment in research on the evaluation of capacity development

    Principles of conservation biology

    No full text
    Principles of Conservation Biology, Third Edition features a wholly revised organization, emphasizing analyses of different categories of threat and approaches to conservation. Coverage has been expanded to incorporate both terrestrial and marine conservation issues, and efforts in the U.S. and across the globe. Principles' eighteen chapters introduce the major themes and concepts of this diverse and dynamic field. The biological and social underpinnings of conservation problems and potential solutions are interwoven throughout the text, which is divided into three sections: foundations of the field, threats to biodiversity, and approaches to solving conservation problems. Guest essays and case studies provide a diversity of perspectives and real-world examples that add insight and provoke discussion. The text is richly illustrated, and concludes with an extensive glossary and bibliography. This book is intended for use in conservation biology courses at the advanced undergraduate and graduate levels, as well as by researchers and practitioners, and assumes a basic background in biology and ecology

    Appendix A. MANOVA results showing the effect of insect reduction on per capita seed production and pod damage at Colockum Creek and Upper Dry Gulch 2003 in the foothills of the Wenatchee Mountains, Washington, USA.

    No full text
    MANOVA results showing the effect of insect reduction on per capita seed production and pod damage at Colockum Creek and Upper Dry Gulch 2003 in the foothills of the Wenatchee Mountains, Washington, USA

    How Much Can Students Gain in Data Analysis and Critical Thinking Skills in One Semester?

    No full text
    Background/Question/Methods: The effective preservation and sustainable use of ecosystems is a complex endeavor that requires proficiency in skills of critical thinking, data analysis, oral communication, broad synthesis of information and teamwork across diverse groups. However, there is concern that US undergraduate science students do not currently develop these fundamental process skills they will need as professionals. In this study, we investigate how we can best ‘operationalize’ the teaching of process skills and how we can assess their development in undergraduate students. We are implementing a multi-year, multi-institutional research project to: (1) develop a set of instructional materials and assessment tools for critical thinking, oral communication, and data analysis; and (2) pilot these materials in a diversity of classroom settings under two instructional modalities: individual student reflection versus intensive classroom discussion of the skill. Results/Conclusions: Twenty-four conservation biologists have collaborated during the last year to create and validate instructional materials for process skills development, led by the Network of Conservation Educators and Practitioners (ncep.amnh.org). The instructional set for each skill consisted of pre/post student self-assessments, two exercises with rubrics for evaluation of student performance, and pre/post exercise content assessments. In fall 2011, nine professors piloted these materials in biology, ecology, and conservation biology courses. We present preliminary results from a subset of their students, from instructional units on data analysis using an intensive classroom discussion (DA; N=22) and critical thinking using individual student reflection (CT; N=20). For DA, we find significant increases in student self-confidence on data representation and interpretation (P0.05). For both skills, we find gains in content knowledge after the application of exercises (DA: g=0.22±0.082; CT: g=0.4±0.11). Observed gains in the skills vary depending on the aspect analyzed. For DA, students experienced significant gains in data representation and interpretation (V=17,

    Developing and Assessing Process Skills in Conservation Biology and Other Integrative Fields

    No full text
    Goals and Intended Outcome: The goals are to: 1) create and validate a set of instructional materials designed to develop and assess process skills important in conservation biology and other integrative fields, and 2) pilot developed teaching and assessment materials in diverse classroom settings. We expect to increase our understanding of how to promote data analysis, critical thinking, and oral communication skills in students. Methods and Strategies: After creation and validation of instructional materials designed to develop and assess critical thinking, data analysis, and oral communication, we are piloting the materials in a diverse group of academic institutions across the US. Each faculty participant implements a set of instructional materials for a particular skill during two separate semesters of the same course. Evaluation Methods and Results: Our evaluation plan includes formative and summative evaluation activities and the application of diverse tools, both quantitative and qualitative. Project personnel are undertaking ongoing project evaluation with input from project advisers. An evaluation specialist will evaluate the project at mid-point and at its conclusion. Dissemination: We are working with 18 faculty members from diverse academic institutions across the US, including Puerto Rico and the Virgin Islands. In the future, we will make instructional units available to a broader audience of faculty members and conservation trainers through the NCEP website (ncep.amnh.org) Impact: Through this project, faculty members participated collaboratively in the development of teaching and assessment materials. By implementing these materials in their courses, faculty participants are not only learning about their students’ development of process skills, they are also learning about their own teaching practices. In terms of students, this project intends to increase students’ proficiency with process skills important in conservation biology. They will do this through a series of exercises and classroom discussion as well as through self-reflection about the targeted skill. Challenges: Participating faculty found our original experimental design of teaching and assessing more than one skill at a time to be logistically challenging. We adjusted the design to implement teaching and assessment materials for only one skill at a time. This modification did not change the overall goal of the project. Also, faculty members’ participation on the development and validation of the teaching materials was less that expected. Project personnel spent more time than planned working on these tasks. Expected Outcomes: In this comparative, multi-year study we will gather new evidence on teaching and assessment approaches that can help develop process skills in undergraduate students. We expect that classroom implementation of the developed teaching and assessment materials will lead to positive gains in students’ proficiency in critical thinking, data analysis and oral communication skills as well as increased discipline-specific content knowledge. We expect the magnitude of student skill gains will be greater in intensive vs. light teaching intervention treatments. Overall, we expect to increase our understanding of how to promote data analysis, critical thinking, and oral communication skills in undergraduate students. Data Impact: The instructional unit for each skill consists of pre/post student self-assessments, two exercises with rubrics for evaluation of student performance, and pre/post exercise content assessments. We use these tools to measure gains in students’ self-confidence on the skill, in the process skill, and in their knowledge of specific content. We use these tools in two classroom settings: one with an intensive classroom discussion and another with an individual student reflection on the skill. Comparisons between these settings will allow us to determine the effects of teaching intervention on students’ gains in the skill. We will also assess gains in faculty through pre/post questionnaires. Collection Methods: We are working with 18 faculty members who are implementing one of the instructional units in their courses. Six professors are using the instructional unit that targets critical thinking skills, seven the one for data analysis skills, and five for oral communication skills. Each faculty member will implement these units in two separate semesters, one with an intensive classroom discussion and another with an individual student reflection. Key Findings: To date we have results from students using instructional units on data analysis with an intensive classroom discussion (DA; N=104), oral communication with individual student reflection (OC; N=84) and critical thinking with both individual student reflection (CT; N=78) and intensive classroom discussion (N=42). For all three skills we find that students improve in skill performance. However, the degree of improvement varied among skills and skill dimensions, suggesting that some dimensions (e.g. drawing conclusions as part of critical thinking) may require interventions of different durations or intensities. In addition, we find changes in students’ confidence in the three skills, but these changes do not consistently mirror changes in skill. Students over- or underestimated their confidence for particular skills and skill dimensions. Finally, we find that students gained content knowledge while using exercises designed to teach topical content as well as develop skills, suggesting that investment in skill development in a class does not affect content learning. Currently, we are completing data collection from institutions that have used both modalities of teaching intervention – intensive classroom discussion and individual student reflection- to determine the effect of intervention level on students’ skill performance, confidence and content knowledge
    corecore