162 research outputs found
Galectin-9 Controls CD40 Signaling through a Tim-3 Independent Mechanism and Redirects the Cytokine Profile of Pathogenic T Cells in Autoimmunity
While it has long been understood that CD40 plays a critical role in the etiology of autoimmunity, glycobiology is emerging as an important contributor. CD40 signaling is also gaining further interest in transplantation and cancer therapies. Work on CD40 signaling has focused on signaling outcomes and blocking of its ligand, CD154, while little is known about the actual receptor itself and its control. We demonstrated that CD40 is in fact several receptors occurring as constellations of differentially glycosylated forms of the protein that can sometimes form hybrid receptors with other proteins. An enticing area of autoimmunity is differential glycosylation of immune molecules leading to altered signaling. Galectins interact with carbohydrates on proteins to effect such signaling alterations. Studying autoimmune prone NOD and non-autoimmune BALB/c mice, here we reveal that in-vivo CD40 signals alter the glycosylation status of non-autoimmune derived CD4 T cells to resemble that of autoimmune derived CD4 T cells. Galectin-9 interacts with CD40 and, at higher concentrations, prevents CD40 induced proliferative responses of CD4loCD40+ effector T cells and induces cell death through a Tim-3 independent mechanism. Interestingly, galectin-9, at lower concentrations, alters the surface expression of CD3, CD4, and TCR, regulating access to those molecules and thereby redirects the inflammatory cytokine phenotype and CD3 induced proliferation of autoimmune CD4loCD40+ T cells. Understanding the dynamics of the CD40 receptor(s) and the impact of glycosylation status in immunity will gain insight into how to maintain useful CD40 signals while shutting down detrimental ones
Identification of Lck-derived peptides applicable to anti-cancer vaccine for patients with human leukocyte antigen-A3 supertype alleles
The identification of peptide vaccine candidates to date has been focused on human leukocyte antigen (HLA)-A2 and -A24 alleles. In this study, we attempted to identify cytotoxic T lymphocyte (CTL)-directed Lck-derived peptides applicable to HLA-A11+, -A31+, or -A33+ cancer patients, because these HLA-A alleles share binding motifs, designated HLA-A3 supertype alleles, and because the Lck is preferentially expressed in metastatic cancer. Twenty-one Lck-derived peptides were prepared based on the binding motif to the HLA-A3 supertype alleles. They were first screened for their recognisability by immunoglobulin G (IgG) in the plasma of prostate cancer patients, and the selected candidates were subsequently tested for their potential to induce peptide-specific CTLs from peripheral blood mononuclear cells of HLA-A3 supertype+ cancer patients. As a result, four Lck peptides were frequently recognised by IgGs, and three of them – Lck90−99, Lck449−458, and Lck450−458 – efficiently induced peptide-specific and cancer-reactive CTLs. Their cytotoxicity towards cancer cells was mainly ascribed to HLA class I-restricted and peptide-specific CD8+ T cells. These results indicate that these three Lck peptides are applicable to HLA-A3 supertype+ cancer patients, especially those with metastasis. This information could facilitate the development of peptide-based anti-cancer vaccine for patients with alleles other than HLA-A2 and -A24
Inferring the joint demographic history of multiple populations from multidimensional SNP frequency data
Demographic models built from genetic data play important roles in
illuminating prehistorical events and serving as null models in genome scans
for selection. We introduce an inference method based on the joint frequency
spectrum of genetic variants within and between populations. For candidate
models we numerically compute the expected spectrum using a diffusion
approximation to the one-locus two-allele Wright-Fisher process, involving up
to three simultaneous populations. Our approach is a composite likelihood
scheme, since linkage between neutral loci alters the variance but not the
expectation of the frequency spectrum. We thus use bootstraps incorporating
linkage to estimate uncertainties for parameters and significance values for
hypothesis tests. Our method can also incorporate selection on single sites,
predicting the joint distribution of selected alleles among populations
experiencing a bevy of evolutionary forces, including expansions, contractions,
migrations, and admixture. As applications, we model human expansion out of
Africa and the settlement of the New World, using 5 Mb of noncoding DNA
resequenced in 68 individuals from 4 populations (YRI, CHB, CEU, and MXL) by
the Environmental Genome Project. We also combine our demographic model with a
previously estimated distribution of selective effects among newly arising
amino acid mutations to accurately predict the frequency spectrum of
nonsynonymous variants across three continental populations (YRI, CHB, CEU).Comment: 17 pages, 4 figures, supporting information included with sourc
Evolutional and clinical implications of the epigenetic regulation of protein glycosylation
Protein N glycosylation is an ancient posttranslational modification that enriches protein structure and function. The addition of one or more complex oligosaccharides (glycans) to the backbones of the majority of eukaryotic proteins makes the glycoproteome several orders of magnitude more complex than the proteome itself. Contrary to polypeptides, which are defined by a sequence of nucleotides in the corresponding genes, glycan parts of glycoproteins are synthesized by the activity of hundreds of factors forming a complex dynamic network. These are defined by both the DNA sequence and the modes of regulating gene expression levels of all the genes involved in N glycosylation. Due to the absence of a direct genetic template, glycans are particularly versatile and apparently a large part of human variation derives from differences in protein glycosylation. However, composition of the individual glycome is temporally very constant, indicating the existence of stable regulatory mechanisms. Studies of epigenetic mechanisms involved in protein glycosylation are still scarce, but the results suggest that they might not only be important for the maintenance of a particular glycophenotype through cell division and potentially across generations but also for the introduction of changes during the adaptive evolution
Decreased proliferation of human melanoma cell lines caused by antisense RNA against translation factor eIF-4A1
Control of translation initiation was recognised as a critical checkpoint for cell proliferation and tumorigenesis. In human melanoma cells, we have previously reported consistent overexpression of translation initiation factor eIF-4A1. Here, we investigated by transfection of antisense constructs its significance for the control of melanoma cell growth. The tetracycline-inducible expression system was established in melanoma cells, and three fragments of the 5′-, central-, and 3′-portion of the eIF-4A1 cDNA were subcloned in antisense and in sense orientation after a tetracycline inducible promoter. Significant proliferation decrease was obtained after transient transfection and induction of antisense RNA directed against the 5′- and the central portion (up to 10%), whereas, no effects were seen after induction of the 3′-fragment and the sense controls. Cell clones stably transfected with the central antisense fragment revealed after doxycycline induction reduced expression of endogeneous eIF-4A1 mRNA correlated with decreased proliferation rates (up to 6%). These data demonstrate the applicability of antisense strategies against translation factors in melanoma cells. Translation initiation factor eIF-4A1 contributes to the control of melanoma cell proliferation and may be taken into consideration when scheduling new therapeutic approaches targeting the translational control
Role of MRI in staging and follow-up of endometrial and cervical cancer:pitfalls and mimickers
Abstract MRI plays important roles in endometrial and cervical cancer assessment, from detection to recurrent disease evaluation. Endometrial cancer (EC) is the most common malignant tumor of the female genital tract in Western countries. EC patients are divided into risk categories based on histopathological tumor type, grade, and myometrial invasion depth. EC is surgically staged using the International Federation of Gynecology and Obstetrics (FIGO) system. Since FIGO (2009) stage correlates with prognosis, preoperative staging is essential for tailored treatment. MRI reveals myometrial invasion depth, which correlates with tumor grade and lymph node metastases, and thus correlates with prognosis. Cervical cancer (CC) is the second most common cancer, and the third leading cause of cancer-related death among females in developing countries. The FIGO Gynecologic Oncology Committee recently revised its CC staging guidelines, allowing staging based on imaging and pathological findings when available. The revised FIGO (2018) staging includes node involvement and thus enables both therapy selection and evaluation, prognosis estimation, and calculation of end results. MRI can accurately assess prognostic indicators, e.g., tumor size, parametrial invasion, pelvic sidewall, and lymph node invasion. Despite these important roles of MRI, radiologists still face challenges due to the technical and interpretation pitfalls of MRI during all phases of endometrial and cervical cancer evaluation. Awareness of mimics that can simulate both cancers is critical. With careful application, functional MRI with DWI and DCE sequences can help establish a correct diagnosis, although it is sometimes necessary to perform biopsy and histopathological analysis
Mycobacterium leprae Phenolglycolipid-1 Expressed by Engineered M. bovis BCG Modulates Early Interaction with Human Phagocytes
The species-specific phenolic glycolipid 1 (PGL-1) is suspected to play a critical role in the pathogenesis of leprosy, a chronic disease of the skin and peripheral nerves caused by Mycobacterium leprae. Based on studies using the purified compound, PGL-1 was proposed to mediate the tropism of M. leprae for the nervous system and to modulate host immune responses. However, deciphering the biological function of this glycolipid has been hampered by the inability to grow M. leprae in vitro and to genetically engineer this bacterium. Here, we identified the M. leprae genes required for the biosynthesis of the species-specific saccharidic domain of PGL-1 and reprogrammed seven enzymatic steps in M. bovis BCG to make it synthesize and display PGL-1 in the context of an M. leprae-like cell envelope. This recombinant strain provides us with a unique tool to address the key questions of the contribution of PGL-1 in the infection process and to study the underlying molecular mechanisms. We found that PGL-1 production endowed recombinant BCG with an increased capacity to exploit complement receptor 3 (CR3) for efficient invasion of human macrophages and evasion of inflammatory responses. PGL-1 production also promoted bacterial uptake by human dendritic cells and dampened their infection-induced maturation. Our results therefore suggest that M. leprae produces PGL-1 for immune-silent invasion of host phagocytic cells
- …