1,593 research outputs found

    Symbiotic Human Gut Bacteria with Variable Metabolic Priorities for Host Mucosal Glycans.

    Get PDF
    UnlabelledMany symbiotic gut bacteria possess the ability to degrade multiple polysaccharides, thereby providing nutritional advantages to their hosts. Like microorganisms adapted to other complex nutrient environments, gut symbionts give different metabolic priorities to substrates present in mixtures. We investigated the responses of Bacteroides thetaiotaomicron, a common human intestinal bacterium that metabolizes more than a dozen different polysaccharides, including the O-linked glycans that are abundant in secreted mucin. Experiments in which mucin glycans were presented simultaneously with other carbohydrates show that degradation of these host carbohydrates is consistently repressed in the presence of alternative substrates, even by B. thetaiotaomicron previously acclimated to growth in pure mucin glycans. Experiments with media containing systematically varied carbohydrate cues and genetic mutants reveal that transcriptional repression of genes involved in mucin glycan metabolism is imposed by simple sugars and, in one example that was tested, is mediated through a small intergenic region in a transcript-autonomous fashion. Repression of mucin glycan-responsive gene clusters in two other human gut bacteria, Bacteroides massiliensis and Bacteroides fragilis, exhibited variable and sometimes reciprocal responses compared to those of B. thetaiotaomicron, revealing that these symbionts vary in their preference for mucin glycans and that these differences occur at the level of controlling individual gene clusters. Our results reveal that sensing and metabolic triaging of glycans are complex processes that vary among species, underscoring the idea that these phenomena are likely to be hidden drivers of microbiota community dynamics and may dictate which microorganisms preferentially commit to various niches in a constantly changing nutritional environment.ImportanceHuman intestinal microorganisms impact many aspects of health and disease, including digestion and the propensity to develop disorders such as inflammation and colon cancer. Complex carbohydrates are a major component of the intestinal habitat, and numerous species have evolved and refined strategies to compete for these coveted nutrients. Our findings reveal that individual bacteria exhibit different preferences for carbohydrates emanating from host diet and mucosal secretions and that some of these prioritization strategies are opposite to one another. Thus, we reveal new aspects of how individual bacteria, some with otherwise similar metabolic potential, partition to "preferred niches" in the complex gut ecosystem, which has important and immediate implications for understanding and predicting the behavioral dynamics of this community

    Ruminococcal cellulosome systems from rumen to human

    Get PDF
    This article is protected by copyright. All rights reserved. The authors appreciate the kind assistance of Miriam Lerner (ImmunArray Ltd. Company, Rehovot, Israel) with experiments involving the MicroGrid II arrayer. This research was supported by a grant (No. 1349) to EAB also from the Israel Science Foundation (ISF) and a grant (No. 24/11) issued to RL by The Sidney E. Frank Foundation also through the ISF. Additional support was obtained from the establishment of an Israeli Center of Research Excellence (I-CORE Center No. 152/11) managed by the Israel Science Foundation, from the United States-Israel Binational Science Foundation (BSF), Jerusalem, Israel, by the Weizmann Institute of Science Alternative Energy Research Initiative (AERI) and the Helmsley Foundation. The authors also appreciate the support of the European Union, Area NMP.2013.1.1-2: Self-assembly of naturally occurring nanosystems: CellulosomePlus Project number: 604530 and an ERA-IB Consortium (EIB.12.022), acronym FiberFuel. HF and SHD acknowledge support from the Scottish Government Food Land and People programme and from BBSRC grant no. BB/L009951/1. In addition, EAB is grateful for a grant from the F. Warren Hellman Grant for Alternative Energy Research in Israel in support of alternative energy research in Israel administered by the Israel Strategic Alternative Energy Foundation (I-SAEF). E.A.B. is the incumbent of The Maynard I. and Elaine Wishner Chair of Bio-organic ChemistryPeer reviewedPostprin

    Multi-level Adversarial Spatio-temporal Learning for Footstep Pressure based FoG Detection

    Full text link
    Freezing of gait (FoG) is one of the most common symptoms of Parkinson's disease, which is a neurodegenerative disorder of the central nervous system impacting millions of people around the world. To address the pressing need to improve the quality of treatment for FoG, devising a computer-aided detection and quantification tool for FoG has been increasingly important. As a non-invasive technique for collecting motion patterns, the footstep pressure sequences obtained from pressure sensitive gait mats provide a great opportunity for evaluating FoG in the clinic and potentially in the home environment. In this study, FoG detection is formulated as a sequential modelling task and a novel deep learning architecture, namely Adversarial Spatio-temporal Network (ASTN), is proposed to learn FoG patterns across multiple levels. A novel adversarial training scheme is introduced with a multi-level subject discriminator to obtain subject-independent FoG representations, which helps to reduce the over-fitting risk due to the high inter-subject variance. As a result, robust FoG detection can be achieved for unseen subjects. The proposed scheme also sheds light on improving subject-level clinical studies from other scenarios as it can be integrated with many existing deep architectures. To the best of our knowledge, this is one of the first studies of footstep pressure-based FoG detection and the approach of utilizing ASTN is the first deep neural network architecture in pursuit of subject-independent representations. Experimental results on 393 trials collected from 21 subjects demonstrate encouraging performance of the proposed ASTN for FoG detection with an AUC 0.85

    Dynamic Bayesian belief network to model the development of walking and cycling schemes

    Get PDF
    This paper aims to describe a model which represents the formulation of decision-making processes (over a number of years) affecting the step-changes of walking and cycling (WaC) schemes. These processes can be seen as being driven by a number of causal factors, many of which are associated with the attitudes of a variety of factors, in terms of both determining whether any scheme will be implemented and, if it is implemented, the extent to which it is used. The outputs of the model are pathways as to how the future might unfold (in terms of a number of future time steps) with respect to specific pedestrian and cyclist schemes. The transitions of the decision making processes are formulated using a qualitative simulation method, which describes the step-changes of the WaC scheme development. In this article a Bayesian belief network (BBN) theory is extended to model the influence between and within factors in the dynamic decision making process

    Porcine iGb3s gene silencing provides minimal benefit for clinical xenotransplantation

    Get PDF
    Background The GalĪ±(1,3)Gal epitope (Ī±-GAL), created by Ī±-1,3-glycosyltransferase-1 (GGTA1), is a major xenoantigen causing hyperacute rejection in pig-to-primate and pig-to-human xenotransplantation. In response, GGTA1 gene-deleted pigs have been generated. However, it is unclear whether there is a residual small amount of Ī±-Gal epitope expressed in GGTA1āˆ’/āˆ’ pigs. Isoglobotrihexosylceramide synthase (iGb3s), another member of the glycosyltransferase family, catalyzes the synthesis of isoglobo-series glycosphingolipids with an Ī±-GAL-terminal disaccharide (iGb3), creating the possibility that iGb3s may be a source of Ī±-GAL epitopes in GGTA1āˆ’/āˆ’ animals. The objective of this study was to examine the impact of silencing the iGb3s gene (A3GalT2) on pig-to-primate and pig-to-human immune cross-reactivity by creating and comparing GGTA1āˆ’/āˆ’ pigs to GGTA1āˆ’/āˆ’- and A3GalT2āˆ’/āˆ’-double-knockout pigs. Methods We used the CRISPR/Cas 9 system to target the GGTA1 and A3GalT2 genes in pigs. Both GGTA1 and A3GalT2 genes are functionally inactive in humans and baboons. CRISPR-treated cells used directly for somatic cell nuclear transfer produced single- and double-gene-knockout piglets in a single pregnancy. Once grown to maturity, the glycosphingolipid profile (including iGb3) was assayed in renal tissue by normal-phase liquid chromatography. In addition, peripheral blood mononuclear cells (PBMCs) were subjected to (i) comparative cross-match cytotoxicity analysis against human and baboon serum and (ii) IB4 staining for Ī±-GAL/iGb3. Results Silencing of the iGb3s gene significantly modulated the renal glycosphingolipid profile and iGb3 was not detected. Moreover, the human and baboon serum PBMC cytotoxicity and Ī±-GAL/iGb3 staining were unchanged by iGb3s silencing. Conclusions Our data suggest that iGb3s is not a contributor to antibody-mediated rejection in pig-to-primate or pig-to-human xenotransplantation. Although iGb3s gene silencing significantly changed the renal glycosphingolipid profile, the effect on GalĪ±3Gal levels, antibody binding, and cytotoxic profiles of baboon and human sera on porcine PBMCs was neutral
    • ā€¦
    corecore