11 research outputs found

    Safety Monitoring in Group A Meningococcal Conjugate Vaccine Trials: Description, Challenges, and Lessons

    Get PDF
    Background. The determination of the safety profile of any vaccine is critical to its widespread use in any population. In addition, the application of international guidelines to fit local context could be a challenging but important step toward obtaining quality safety data. Methods. In clinical studies of PsA-TT (MenAfriVac), safety was monitored immediately after vaccination, at 4-7 days for postimmunization local and systemic reactions, within 28 days for adverse events, and throughout the duration of study for serious adverse events. Initial and ongoing training of sites' staff were undertaken during the studies, and a data and safety monitoring board reviewed all the data during and after the studies. Results. The safety of PsA-TT was evaluated according to international standards despite obvious challenges in remote areas where these studies were conducted. These challenges included the need for uniformity of methods, timely reporting in the context of frequent communication problems, occurrence of seasonal diseases such as malaria and rotavirus diarrhea, and healthcare systems that required improvement. Conclusions. The trials of PsA-TT highlighted the value of a robust vaccine development plan and design so that lessons learned in initial studies were incorporated into the subsequent ones, initial training and periodic retraining, strict monitoring of all procedures, and continuous channel of communication with all stakeholders that enabled the application of international requirements to local settings, with high quality of dat

    A Phase 3, Double-Blind, Randomized, Active Controlled Study to Evaluate the Safety of MenAfriVac in Healthy Malians

    Get PDF
    Background. A safe, affordable, and highly immunogenic meningococcal A conjugate vaccine (PsA-TT, MenAfriVac) was developed to control epidemic group A meningitis in Africa. Documentation of the safety specifications of the PsA-TT vaccine was warranted, with sufficient exposure to detect potential rare vaccine-related adverse reactions. Methods. This phase 3, double-blind, randomized, active controlled clinical study was designed to evaluate the safety—primarily vaccine-related serious adverse events (SAEs)—up to 3 months after administration of a single dose of the PsA-TT vaccine to subjects aged 1-29 years in Mali. Safety outcomes were also compared to those following a single dose of a licensed meningococcal ACWY polysaccharide vaccine (PsACWY). Results. No vaccine-related SAEs occurred during the 3 months of follow-up of 4004 subjects vaccinated with a single dose of PsA-TT. When compared to PsACWY (1996 subjects), tenderness at the injection site appeared to be more frequent in the PsA-TT group. However, rates of local induration, systemic reactions, adverse events (AEs), and SAEs were similar in both groups, and unsolicited AEs and SAEs were all unrelated to the study vaccines. Conclusions. The study confirmed on a large scale the excellent safety profile of a single dose of PsA-TT when administered to its entire target population of 1-29 years of age. Clinical Trials Registration. PACTR ATMR20100300019131

    Antibody Persistence 1-5 Years Following Vaccination With MenAfriVac in African Children Vaccinated at 12-23 Months of Age.

    Get PDF
    BACKGROUND: Following mass vaccination campaigns in the African meningitis belt with group A meningococcal conjugate vaccine, MenAfriVac (PsA-TT), disease due to group A meningococci has nearly disappeared. Antibody persistence in healthy African toddlers was investigated. METHODS: African children vaccinated at 12-23 months of age with PsA-TT were followed for evaluation of antibody persistence up to 5 years after primary vaccination. Antibody persistence was evaluated by measuring group A serum bactericidal antibody (SBA) with rabbit complement and by a group A-specific IgG enzyme-linked immunosorbent assay (ELISA). RESULTS: Group A antibodies measured by SBA and ELISA were shown to decline in the year following vaccination and plateaued at levels significantly above baseline for up to 5 years following primary vaccination. CONCLUSIONS: A single dose of PsA-TT induces long-term sustained levels of group A meningococcal antibodies for up to 5 years after vaccination. CLINICAL TRIALS REGISTRATION: ISRTCN78147026

    Ethical Challenges and Lessons Learned During the Clinical Development of a Group A Meningococcal Conjugate Vaccine.

    Get PDF
    BACKGROUND: The group A meningococcal vaccine (PsA-TT) clinical development plan included clinical trials in India and in the West African region between 2005 and 2013. During this period, the Meningitis Vaccine Project (MVP) accumulated substantial experience in the ethical conduct of research to the highest standards. METHODS: Because of the public-private nature of the sponsorship of these trials and the extensive international collaboration with partners from a diverse setting of countries, the ethical review process was complex and required strategic, timely, and attentive communication to ensure the smooth review and approval for the clinical studies. Investigators and their site teams fostered strong community relationships prior to, during, and after the studies to ensure the involvement and the ownership of the research by the participating populations. As the clinical work proceeded, investigators and sponsors responded to specific questions of informed consent, pregnancy testing, healthcare, disease prevention, and posttrial access. RESULTS: Key factors that led to success included (1) constant dialogue between partners to explore and answer all ethical questions; (2) alertness and preparedness for emerging ethical questions during the research and in the context of evolving international ethics standards; and (3) care to assure that approaches were acceptable in the diverse community contexts. CONCLUSIONS: Many of the ethical issues encountered during the PsA-TT clinical development are familiar to groups conducting field trials in different cultural settings. The successful approaches used by the MVP clinical team offer useful examples of how these problems were resolved. CLINICAL TRIALS REGISTRATION: ISRCTN17662153 (PsA-TT-001); ISRTCN78147026 (PsA-TT-002); ISRCTN87739946 (PsA-TT-003); ISRCTN46335400 (PsA-TT-003a); ISRCTN82484612 (PsA-TT-004); CTRI/2009/091/000368 (PsA-TT-005); PACTR ATMR2010030001913177 (PsA-TT-006); PACTR201110000328305 (PsA-TT-007)

    Meningococcal ACWYX Conjugate Vaccine in 2-to-29-Year-Olds in Mali and Gambia.

    No full text
    BACKGROUND: An effective, affordable, multivalent meningococcal conjugate vaccine is needed to prevent epidemic meningitis in the African meningitis belt. Data on the safety and immunogenicity of NmCV-5, a pentavalent vaccine targeting the A, C, W, Y, and X serogroups, have been limited. METHODS: We conducted a phase 3, noninferiority trial involving healthy 2-to-29-year-olds in Mali and Gambia. Participants were randomly assigned in a 2:1 ratio to receive a single intramuscular dose of NmCV-5 or the quadrivalent vaccine MenACWY-D. Immunogenicity was assessed at day 28. The noninferiority of NmCV-5 to MenACWY-D was assessed on the basis of the difference in the percentage of participants with a seroresponse (defined as prespecified changes in titer; margin, lower limit of the 96% confidence interval [CI] above -10 percentage points) or geometric mean titer (GMT) ratios (margin, lower limit of the 98.98% CI >0.5). Serogroup X responses in the NmCV-5 group were compared with the lowest response among the MenACWY-D serogroups. Safety was also assessed. RESULTS: A total of 1800 participants received NmCV-5 or MenACWY-D. In the NmCV-5 group, the percentage of participants with a seroresponse ranged from 70.5% (95% CI, 67.8 to 73.2) for serogroup A to 98.5% (95% CI, 97.6 to 99.2) for serogroup W; the percentage with a serogroup X response was 97.2% (95% CI, 96.0 to 98.1). The overall difference between the two vaccines in seroresponse for the four shared serogroups ranged from 1.2 percentage points (96% CI, -0.3 to 3.1) for serogroup W to 20.5 percentage points (96% CI, 15.4 to 25.6) for serogroup A. The overall GMT ratios for the four shared serogroups ranged from 1.7 (98.98% CI, 1.5 to 1.9) for serogroup A to 2.8 (98.98% CI, 2.3 to 3.5) for serogroup C. The serogroup X component of the NmCV-5 vaccine generated seroresponses and GMTs that met the prespecified noninferiority criteria. The incidence of systemic adverse events was similar in the two groups (11.1% in the NmCV-5 group and 9.2% in the MenACWY-D group). CONCLUSIONS: For all four serotypes in common with the MenACWY-D vaccine, the NmCV-5 vaccine elicited immune responses that were noninferior to those elicited by the MenACWY-D vaccine. NmCV-5 also elicited immune responses to serogroup X. No safety concerns were evident. (Funded by the U.K. Foreign, Commonwealth, and Development Office and others; ClinicalTrials.gov number, NCT03964012.)
    corecore