7 research outputs found
Corrélation entre les procédés de fabrication, les propriétés microstructurales et les propriétés mécaniques de couches minces métalliques pour applications microsystèmes
L'agence spatiale européenne et le CNES étudient la possibilité d envoyer des microsystèmes dans l espace, en particulier pour le gain de masse qu ils représentent. Afin d améliorer la fiabilité des composants en couches minces dans le temps et leurs performances, il est nécessaire de connaitre leurs propriétés mécaniques. Plusieurs techniques de caractérisation existent, en particulier la nanoindentation qui sollicite les couches minces directement sur substrat. Mais les résultats peuvent être largement influencés par le substrat dans le cas des couches microniques. Les méthodes de traction uniaxiale (CNES) et du gonflement de membranes autoportantes (INL) permettent de s affranchir des effets du substrat, mais la fabrication de telles structures est complexe et nécessite bon nombre d étapes technologiques pour retirer le substrat en face arrière. L objectif de cette thèse est de comprendre le lien qui existe entre les paramètres de fabrication de couches minces métalliques d'or et d'aluminium, leur microstructure, et leurs propriétés mécaniques à l aide des outils présentés précédemment. Une perspective étant de mieux agir sur les procédés de fabrication afin d améliorer la fiabilité des composants. Le premier chapitre présente les différentes techniques de dépôt, leur thermodynamique et cinétique, les types de microstructures rapportées dans la littérature, ainsi que la réalisation des structures de test. Le deuxième présente les caractérisations microstructurales, et la corrélation entre les paramètres de dépôt et les propriétés microstructurales est discutée. Le chapitre trois présente les caractérisations mécaniques des couches minces, sur substrat ou autoportantes, par les méthodes de nanoindentation en pointe Berkovich et sphérique, de microtraction et du gonflement de membrane. Le dernier chapitre est consacré aux relations entre les propriétés microstructurales et mécaniques des couches minces métalliques et à l'influence des traitements thermiques.The European Space Agency and CNES are studying the possibility of sending microsystems in space, especially for the mass gain they represent. To improve the reliability of components, it is necessary to know their mechanical properties. Several characterization techniques exist, especially nanoindentation of thin films on substrates. However, results can be largely influenced by the substrate in the case of micron layers. The methods of uniaxial tension (CNES) and bulge-test (INL) on freestanding specimen are used to eliminate the effects of the substrate, but the fabrication of such structures is complex and requires many technological steps to remove the substrate on the backside. The objective of this thesis is to understand the relationship between manufacturing parameters of thin metal films of gold and aluminum thin films, their microstructure and mechanical properties using the tools described above. The first chapter presents different deposition techniques, their thermodynamics and kinetics, types of microstructures reported in the literature, and the fabrication of test structures. The second presents the microstructural characterization, and correlation between deposition parameters and the microstructural properties is discussed. Chapter three presents the mechanical characterization of thin films on substrate or freestanding ones, by the methods of nanoindentation with Berkovich and spherical tips, microtensile test and bulge test. The last chapter is devoted to relations between microstructural and mechanical properties of thin metal films and the influence of heat treatments.VILLEURBANNE-DOC'INSA-Bib. elec. (692669901) / SudocSudocFranceF
Validation of Finite Element Structural Simulation for Ohmic Microcontact
AbstractIn the current literature, there is no model able to accurately predict the electrical resistance value of rough micro- contacts. Such model requires a coupled thermo-electro-structural analysis that is very difficult to validate in a straightforward manner. In the present approach, atomic force microscopy (AFM) scanned data of contact surface with roughness are used to build finite element (FE) model. As a first step towards multiphysics analysis, the aim of this study is to validate results of structural simulation of a rough gold micro-contact.A setup with a nanoindenter and a real microswitch is used to extract force-displacement curves. These results are compared to FE simulations which allow evaluating the effects of the main parameters. It is shown that the accuracy of these structural simulations is acceptable for an accurate evaluation of the electrical contact resistance
Correlation between manufacturing processes, microstructural properties and mechanical properties of metallic thin films for MEMS applications
L'agence spatiale européenne et le CNES étudient la possibilité d’envoyer des microsystèmes dans l’espace, en particulier pour le gain de masse qu’ils représentent. Afin d’améliorer la fiabilité des composants en couches minces dans le temps et leurs performances, il est nécessaire de connaitre leurs propriétés mécaniques. Plusieurs techniques de caractérisation existent, en particulier la nanoindentation qui sollicite les couches minces directement sur substrat. Mais les résultats peuvent être largement influencés par le substrat dans le cas des couches microniques. Les méthodes de traction uniaxiale (CNES) et du gonflement de membranes autoportantes (INL) permettent de s’affranchir des effets du substrat, mais la fabrication de telles structures est complexe et nécessite bon nombre d’étapes technologiques pour retirer le substrat en face arrière. L’objectif de cette thèse est de comprendre le lien qui existe entre les paramètres de fabrication de couches minces métalliques d'or et d'aluminium, leur microstructure, et leurs propriétés mécaniques à l’aide des outils présentés précédemment. Une perspective étant de mieux agir sur les procédés de fabrication afin d’améliorer la fiabilité des composants. Le premier chapitre présente les différentes techniques de dépôt, leur thermodynamique et cinétique, les types de microstructures rapportées dans la littérature, ainsi que la réalisation des structures de test. Le deuxième présente les caractérisations microstructurales, et la corrélation entre les paramètres de dépôt et les propriétés microstructurales est discutée. Le chapitre trois présente les caractérisations mécaniques des couches minces, sur substrat ou autoportantes, par les méthodes de nanoindentation en pointe Berkovich et sphérique, de microtraction et du gonflement de membrane. Le dernier chapitre est consacré aux relations entre les propriétés microstructurales et mécaniques des couches minces métalliques et à l'influence des traitements thermiques.The European Space Agency and CNES are studying the possibility of sending microsystems in space, especially for the mass gain they represent. To improve the reliability of components, it is necessary to know their mechanical properties. Several characterization techniques exist, especially nanoindentation of thin films on substrates. However, results can be largely influenced by the substrate in the case of micron layers. The methods of uniaxial tension (CNES) and bulge-test (INL) on freestanding specimen are used to eliminate the effects of the substrate, but the fabrication of such structures is complex and requires many technological steps to remove the substrate on the backside. The objective of this thesis is to understand the relationship between manufacturing parameters of thin metal films of gold and aluminum thin films, their microstructure and mechanical properties using the tools described above. The first chapter presents different deposition techniques, their thermodynamics and kinetics, types of microstructures reported in the literature, and the fabrication of test structures. The second presents the microstructural characterization, and correlation between deposition parameters and the microstructural properties is discussed. Chapter three presents the mechanical characterization of thin films on substrate or freestanding ones, by the methods of nanoindentation with Berkovich and spherical tips, microtensile test and bulge test. The last chapter is devoted to relations between microstructural and mechanical properties of thin metal films and the influence of heat treatments
Corrélation entre les procédés de fabrication, les propriétés microstructurales et les propriétés mécaniques de couches minces métalliques pour applications microsystèmes
The European Space Agency and CNES are studying the possibility of sending microsystems in space, especially for the mass gain they represent. To improve the reliability of components, it is necessary to know their mechanical properties. Several characterization techniques exist, especially nanoindentation of thin films on substrates. However, results can be largely influenced by the substrate in the case of micron layers. The methods of uniaxial tension (CNES) and bulge-test (INL) on freestanding specimen are used to eliminate the effects of the substrate, but the fabrication of such structures is complex and requires many technological steps to remove the substrate on the backside. The objective of this thesis is to understand the relationship between manufacturing parameters of thin metal films of gold and aluminum thin films, their microstructure and mechanical properties using the tools described above. The first chapter presents different deposition techniques, their thermodynamics and kinetics, types of microstructures reported in the literature, and the fabrication of test structures. The second presents the microstructural characterization, and correlation between deposition parameters and the microstructural properties is discussed. Chapter three presents the mechanical characterization of thin films on substrate or freestanding ones, by the methods of nanoindentation with Berkovich and spherical tips, microtensile test and bulge test. The last chapter is devoted to relations between microstructural and mechanical properties of thin metal films and the influence of heat treatments.L'agence spatiale européenne et le CNES étudient la possibilité d’envoyer des microsystèmes dans l’espace, en particulier pour le gain de masse qu’ils représentent. Afin d’améliorer la fiabilité des composants en couches minces dans le temps et leurs performances, il est nécessaire de connaitre leurs propriétés mécaniques. Plusieurs techniques de caractérisation existent, en particulier la nanoindentation qui sollicite les couches minces directement sur substrat. Mais les résultats peuvent être largement influencés par le substrat dans le cas des couches microniques. Les méthodes de traction uniaxiale (CNES) et du gonflement de membranes autoportantes (INL) permettent de s’affranchir des effets du substrat, mais la fabrication de telles structures est complexe et nécessite bon nombre d’étapes technologiques pour retirer le substrat en face arrière. L’objectif de cette thèse est de comprendre le lien qui existe entre les paramètres de fabrication de couches minces métalliques d'or et d'aluminium, leur microstructure, et leurs propriétés mécaniques à l’aide des outils présentés précédemment. Une perspective étant de mieux agir sur les procédés de fabrication afin d’améliorer la fiabilité des composants. Le premier chapitre présente les différentes techniques de dépôt, leur thermodynamique et cinétique, les types de microstructures rapportées dans la littérature, ainsi que la réalisation des structures de test. Le deuxième présente les caractérisations microstructurales, et la corrélation entre les paramètres de dépôt et les propriétés microstructurales est discutée. Le chapitre trois présente les caractérisations mécaniques des couches minces, sur substrat ou autoportantes, par les méthodes de nanoindentation en pointe Berkovich et sphérique, de microtraction et du gonflement de membrane. Le dernier chapitre est consacré aux relations entre les propriétés microstructurales et mécaniques des couches minces métalliques et à l'influence des traitements thermiques
Nanoindentation experiments with small tip radii: an experimental method
International audienc
Electromechanical study of polyurethane films with carbon black nanoparticles for MEMS actuators
International audiencePure polyurethane and nanocomposite carbon black (CB) polyurethane solutions were deposited by spin-coating on a silicon substrate using gold as the adhesion layer and electrode. Different test structures were achieved for electrical and mechanical characterizations. The incorporation of CB nanoparticles in the polyurethane matrix has a significant influence on the dielectric permittivity of the material with an increase of about one third of its value. The Young's modulus of PU and nanocomposite PU films was determined by different characterization methods. Nanoindentation experiments have pointed out a Young's modulus gradient through the film thickness. By performing mechanical tests (tensile, bulge, point deflection) on freestanding films, an average Young's modulus value of about 30 MPa was found as well as a residual stress value of about 0.4 MPa. However, no influence of the presence of the nanoparticles was found. Finally, several MEMS actuators were realized and characterized. At their fundamental resonance frequency, the actuation of the nanocomposite membranes is more efficient than that of pure polyurethane. However, the time constant of the material seems to provide a major barrier for the development of high-frequency PU-based micro-actuators