25 research outputs found

    Oxidation products of 5-methyl cytosine are decreased in senescent cells and tissues of progeroid mice

    Get PDF
    5-Hydroxymethylcytosine and 5-formylcytosine are stable DNA base modifications generated from 5-methylcytosine by the ten-eleven translocation protein family that function as epigenetic markers. 5-Hydroxymethyluracil may also be generated from thymine by ten-eleven translocation enzymes. Here, we asked if these epigenetic changes accumulate in senescent cells, since they are thought to be inversely correlated with proliferation. Testing this in ERCC1-XPF-deficient cells and mice also enabled discovery if these DNA base changes are repaired by nucleotide excision repair. Epigenetic marks were measured in proliferating, quiescent and senescent wild-type (WT) and Ercc1−/− primary mouse embryonic fibroblasts. The pattern of epigenetic marks depended more on the proliferation status of the cells than their DNA repair capacity. The cytosine modifications were all decreased in senescent cells compared to quiescent or proliferating cells, whereas 5-(hydroxymethyl)-2′-deoxyuridine was increased. In vivo, both 5-(hydroxymethyl)-2′-deoxyuridine and 5-(hydroxymethyl)-2′-deoxycytidine were significantly increased in liver tissues of aged WT mice compared to young adult WT mice. Livers of Ercc1-deficient mice with premature senescence and aging had reduced level of 5-(hydroxymethyl)- 2′-deoxycytidine and 5-formyl-2′-deoxycytidine compared to aged-matched WT controls. Taken together, we demonstrate for the first time, that 5-(hydroxymethyl)-2′-deoxycytidine is significantly reduced in senescent cells and tissue, potentially yielding a novel marker of senescence

    N6-methyladenosine regulates the stability of RNA:DNA hybrids in human cells

    Get PDF
    © 2019, The Author(s), under exclusive licence to Springer Nature America, Inc. R-loops are nucleic acid structures formed by an RNA:DNA hybrid and unpaired single-stranded DNA that represent a source of genomic instability in mammalian cells1–4. Here we show that N6-methyladenosine (m6A) modification, contributing to different aspects of messenger RNA metabolism5,6, is detectable on the majority of RNA:DNA hybrids in human pluripotent stem cells. We demonstrate that m6A-containing R-loops accumulate during G2/M and are depleted at G0/G1 phases of the cell cycle, and that the m6A reader promoting mRNA degradation, YTHDF2 (ref. 7), interacts with R-loop-enriched loci in dividing cells. Consequently, YTHDF2 knockout leads to increased R-loop levels, cell growth retardation and accumulation of γH2AX, a marker for DNA double-strand breaks, in mammalian cells. Our results suggest that m6A regulates accumulation of R-loops, implying a role for this modification in safeguarding genomic stability

    Tissue-Specific Differences in DNA Modifications (5-Hydroxymethylcytosine, 5-Formylcytosine, 5-Carboxylcytosine and 5-Hydroxymethyluracil) and Their Interrelationships.

    No full text
    Replication-independent active/enzymatic demethylation may be an important process in the functioning of somatic cells. The most plausible mechanisms of active 5-methylcytosine demethylation, leading to activation of previously silenced genes, involve ten-eleven translocation (TET) proteins that participate in oxidation of 5-methylcytosine to 5-hydroxymethylcytosine which can be further oxidized to 5-formylcytosine and 5-carboxylcytosine. Recently, 5-hydroxymethylcytosine was demonstrated to be a relatively stable modification, and the previously observed substantial differences in the level of this modification in various murine tissues were shown to depend mostly on cell proliferation rate. Some experimental evidence supports the hypothesis that 5-hydroxymethyluracil may be also generated by TET enzymes and has epigenetic functions.Using an isotope-dilution automated online two-dimensional ultra-performance liquid chromatography with tandem mass spectrometry, we have analyzed, for the first time, all the products of active DNA demethylation pathway: 5-methyl-2'-deoxycytidine, 5-hydroxymethyl-2'-deoxycytidine, 5-formyl-2'-deoxycytidine and 5-carboxyl-2'-deoxycytidine, as well as 5-hydroxymethyl-2'-deoxyuridine, in DNA isolated from various rat and porcine tissues. A strong significant inverse linear correlation was found between the proliferation rate of cells and the global level of 5-hydroxymethyl-2'-deoxycytidine in both porcine (R2 = 0.88) and rat tissues (R2 = 0.83); no such relationship was observed for 5-formyl-2'-deoxycytidine and 5-carboxyl-2'-deoxycytidine. Moreover, a substrate-product correlation was demonstrated for the two consecutive steps of iterative oxidation pathway: between 5-hydroxymethyl-2'-deoxycytidine and its product 5-formyl-2'-deoxycytidine, as well as between 5-formyl-2'-deoxycytidine and 5-carboxyl-2'-deoxycytidine (R2 = 0.60 and R2 = 0.71, respectively).Good correlations within the substrate-product sets of iterative oxidation pathway may suggest that a part of 5-formyl-2'-deoxycytidine and/or 5-carboxyl-2'-deoxycytidine can be directly linked to a small portion of 5-hydroxymethyl-2'-deoxycytidine which defines the active demethylation process

    Interrelationships between DNA modifications.

    No full text
    <p>Interrelationships between 5-methyl-2’-deoxycytidine, 5-hydroxymethyl-2’-deoxycytidine, 5-formyl-2’-deoxycytidine, 5-carboxyl-2’-deoxycytidine and 5-hydroxymethyl-2’-deoxyuridine in DNA of various porcine and rat tissues. Coefficients of determination and p-values were calculated using Pearson’s analysis of correlation. Data is presented as mean values for biological replicates; error bars correspond to standard deviations.</p

    Relationship between tissue-specific proliferation rate and epigenetic DNA modifications.

    No full text
    <p>Relationship between tissue-specific proliferation rate, determined in a murine model and expressed as the percentage of labelled 5-methylcytosine formed in DNA during cellular division (data from [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0144859#pone.0144859.ref005" target="_blank">5</a>] kindly supplied by prof. Bachman) and the content of 5-methyl-2’-deoxycytidine and active demethylation products in DNA isolated from various porcine (red) and rat (green) tissues. Coefficients of determination were calculated using a linearized regression model with logarithmic fit for proliferation rate and linear fit for all other variables. Data presented as mean values for biological replicates; error bars correspond to standard deviations.</p

    Non canonical bases as possible regulators of sex chromosomes in the dioecious plant Silene latifolia

    No full text
    The oxidation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC), known as oxi-mCs, raises interest in plant epigenetics. Extensive research carried out in mammals has demonstrated a role in cell reprogramming, carcinogenesis and gene regulation. In rice, 5hmC has been associated with transposable elements and heterochromatin. Silene latifolia, a dioecious plant with heteromorphic sex chromosomes and a genome characterized by a large proportion of transposable elements, provides a favourable environment for studying oxi-mCs in individual sexes. We unexpectedly found high amounts of oxi-mCs comparable to mammals, which is quite rare since other examples from plants reported little to none. Nuclei showed enrichment in heterochromatic regions, except for 5hmC which signal was homogeneously distributed. Surprisingly, the same X chromosome in females displayed overall enrichment of 5hmC and 5fC regarding its counterpart. This fact is shared with 5mC resembling the dosage compensation phenomenon. Colocalization showed higher correlation between 5mC and 5fC than with 5hmC, which may indicate differential function for 5hmC and 5fC. Additionally, the promoter of several sex-linked genes and sex biased TEs gathered on a clear sex-dependent clustering. Taken together, our results indicate a possible functional role of oxi-mCs in S. latifolia sex chromosome development and regulation

    Mass spectrometry reveals the presence of specific set of epigenetic DNA modifications in the Norway spruce genome

    Get PDF
    5-Methylcytosine (5mC) is an epigenetic modification involved in regulation of gene expression in metazoans and plants. Iron-(II)/α-ketoglutarate-dependent dioxygenases can oxidize 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). Although these oxidized forms of 5mC may serve as demethylation intermediates or contribute to transcriptional regulation in animals and fungi, experimental evidence for their presence in plant genomes is ambiguous. Here, employing reversed-phase HPLC coupled with sensitive mass spectrometry, we demonstrated that, unlike 5caC, both 5hmC and 5fC are detectable in non-negligible quantities in the DNA of a conifer, Norway spruce. Remarkably, whereas 5hmC content of spruce DNA is approximately 100-fold lower relative to human colorectal carcinoma cells, the levels of both - 5fC and a thymine base modification, 5-hydroxymethyluracil, are comparable in these systems. We confirmed the presence of modified DNA bases by immunohistochemistry in Norway spruce buds based on peroxidase-conjugated antibodies and tyramide signal amplification. Our results reveal the presence of specific range of noncanonical DNA bases in conifer genomes implying potential roles for these modifications in plant development and homeostasis

    Accurate, Direct, and High-Throughput Analyses of a Broad Spectrum of Endogenously Generated DNA Base Modifications with Isotope-Dilution Two-Dimensional Ultraperformance Liquid Chromatography with Tandem Mass Spectrometry: Possible Clinical Implication

    No full text
    Our hereby presented methodology is suitable for reliable assessment of the most common unavoidable DNA modifications which arise as a product of fundamental metabolic processes. 8-Oxoguanine, one of the oxidatively modified DNA bases, is a typical biomarker of oxidative stress. A noncanonical base, uracil, may be also present in small quantities in DNA. A set of ten-eleven translocation (TET) proteins are involved in oxidation of 5-methylcytosine to 5-hydroxymethylcytosine which can be further oxidized to 5-formylcytosine and 5-carboxycytosine. 5-Hydroxymethyluracil may be formed in deamination reaction of 5-hydroxymethylcytosine or can be also generated by TET enzymes. All of the aforementioned modifications seem to play some regulatory roles. We applied isotope-dilution automated online two-dimensional ultraperformance liquid chromatography with tandem mass spectrometry (2D-UPLC-MS/MS) for direct measurement of the 5-methyl-2′-deoxycytidine, 5-(hydroxymethyl)-2′-deoxycytidine, 5-formyl-2′-deoxycytidine, 5-carboxy-2′-deoxycytidine, 5-(hydroxymethyl)-2′-deoxyuridine, 2′-deoxyuridine, and 8-oxo-2′-deoxyguanosine. Analyses of DNA extracted from matched human samples showed that the 5-(hydroxymethyl)-2′-deoxycytidine level was 5-fold lower in colorectal carcinoma tumor in comparison with the normal one from the tumor’s margin; also 5-formyl-2′-deoxycytidine and 5-carboxy-2′-deoxycytidine were lower in colorectal carcinoma tissue (ca. 2.5- and 3.5-fold, respectively). No such differences was found for 2′-deoxyuridine and 5-(hydroxymethyl)-2′-deoxyuridine. The presented methodology is suitable for fast, accurate, and complex evaluation of an array of endogenously generated DNA deoxynucleosides modifications. This novel technique could be used for monitoring of cancer and other diseases related to oxidative stress, aberrant metabolism, and environmental exposure. Furthermore, the fully automated two-dimensional separation is extremely useful for analysis of material containing a considerable amount of coeluting interferents with mass-spectrometry-based methods
    corecore