124 research outputs found

    Simultaneous determination of shikimic acid, salicylic acid and jasmonic acid in wild and transgenic Nicotiana langsdorffii plants exposed to abiotic stresses

    Get PDF
    The presence and relative concentration of phytohormones may be regarded as a good indicator of an organism's physiological state. The integration of the roIC gene from Agrobacterium rhizogenes and of the rat glucocorticoid receptor (gr) in Nicotiana langsdorffii Weinmann plants has shown to determine various physiological and metabolic effects. The analysis of wild and transgenic N. langsdorffii plants, exposed to different abiotic stresses (high temperature, water deficit, and high chromium concentrations) was conducted, in order to investigate the metabolic effects of the inserted genes in response to the applied stresses. The development of a new analytical procedure was necessary, in order to assure the simultaneous determination of analytes and to obtain an adequately low limit of quantification. For the first time, a sensitive HPLC-HRMS quantitative method for the simultaneous determination of salicylic acid, jasmonic acid and shikimic acid was developed and validated. The method was applied to 80 plant samples, permitting the evaluation of plant stress responses and highlighting some metabolic mechanisms. Salicylic, jasmonic and shikimic acids proved to be suitable for the comprehension of plant stress responses. Chemical and heat stresses showed to induce the highest changes in plant hormonal status, differently affecting plant response. The potential of each genetic modification toward the applied stresses was marked and particularly the resistance of the gr modified plants was evidenced. This work provides new information in the study of N. langsdorffii and transgenic organisms, which could be useful for the further application of these transgenes. (C) 2016 Elsevier Masson SAS. All rights reserved

    Effects of Water Deficit and Heat Stress on Nicotiana langsdorffii Metabolomic Pattern Modified by Insertion of rolD Gene from Agrobacterium rhizogenes

    Get PDF
    Abiotic stresses are major factors that negatively affect plant growth and productivity. Plants have developed complex strategies to ensure their survival and reproduction under adverse conditions, activating mechanisms that involve changes at different metabolic levels. In order to select stress-resistant species, research has focused on molecular studies and genetic engineering, showing promising results. In this work, the insertion of the rolD gene from Agrobacterium rhizogenes into Nicotiana langsdorffii plants is investigated, in order to assess the potential of this genetic modification towards mitigating water and heat stresses. Different approaches were combined: a high-throughput metabolomics and ionomics study was performed, together with the determination of important plant phytohormones. The aim was to identify the influence of abiotic stresses on plants and to highlight the effects of the rolD genetic modification on plant stress response. The most relevant compounds for each kind of stress were identified, belonging mainly to the classes of lipids, acyl sugars, glycosides, and amino acid derivatives. Water stress (WS) determined a decrease of elements and secondary metabolites, while amino acids and their derivatives increased, proving to be key molecules in this type of stress. RolD plants exposed to high temperature stress (HS) presented higher dry weight levels than controls, as well as increased amounts of K and adenosine and lower levels of damage-associated metabolites, suggesting the increased resistance of rolD-modified plants toward HS.Abiotic stresses are major factors that negatively affect plant growth and productivity. Plants have developed complex strategies to ensure their survival and reproduction under adverse conditions, activating mechanisms that involve changes at different metabolic levels. In order to select stress-resistant species, research has focused on molecular studies and genetic engineering, showing promising results. In this work, the insertion of therolDgene fromAgrobacterium rhizogenesintoNicotiana langsdorffiiplants is investigated, in order to assess the potential of this genetic modification towards mitigating water and heat stresses. Different approaches were combined: a high-throughput metabolomics and ionomics study was performed, together with the determination of important plant phytohormones. The aim was to identify the influence of abiotic stresses on plants and to highlight the effects of therolDgenetic modification on plant stress response. The most relevant compounds for each kind of stress were identified, belonging mainly to the classes of lipids, acyl sugars, glycosides, and amino acid derivatives. Water stress (WS) determined a decrease of elements and secondary metabolites, while amino acids and their derivatives increased, proving to be key molecules in this type of stress. RolD plants exposed to high temperature stress (HS) presented higher dry weight levels than controls, as well as increased amounts of K and adenosine and lower levels of damage-associated metabolites, suggesting the increased resistance ofrolD-modified plants toward HS

    Combining charcoal sediment and molecular markers to infer a Holocene fire history in the Maya Lowlands of Petén, Guatemala

    Get PDF
    Abstract Vegetation changes in the Maya Lowlands during the Holocene are a result of changing climate conditions, solely anthropogenic activities, or interactions of both factors. As a consequence, it is difficult to assess how tropical ecosystems will cope with projected changes in precipitation and land-use intensification over the next decades. We investigated the role of fire during the Holocene by combining macroscopic charcoal and the molecular fire proxies levoglucosan, mannosan and galactosan. Combining these two different fire proxies allows a more robust understanding of the complex history of fire regimes at different spatial scales during the Holocene. In order to infer changes in past biomass burning, we analysed a lake sediment core from Lake Peten Itza, Guatemala, and compared our results with millennial-scale vegetation and climate change available in the area. We detected three periods of high fire activity during the Holocene: 9500–6000 cal yr BP, 3700 cal yr BP and 2700 cal yr BP. We attribute the first maximum mostly to climate conditions and the last maximum to human activities. The rapid change between burned vegetation types at the 3700 cal yr BP fire maximum may result from human activity

    Australian Black summer smoke signal on Antarctic aerosol collected between New Zealand and the Ross sea

    Get PDF
    Open biomass burning (BB) events are a well-known primary aerosol source, resulting in the emission of significant amount of gaseous and particulate matter and affecting Earth’s radiation budget. The 2019–2020 summer, known as “Australian Black Summer”, showed exceptional duration and intensity of seasonal wildfires, triggered by high temperatures and severe droughts. Since increasing megafires are predicted due to expected climate changes, it is critical to study the impact of BB aerosol on a large scale and evaluate related transport processes. In this study, five aerosol samples (total suspended particles with a diameter >1 μm) were collected during the XXXV Italian Expedition in Antarctica on board of the R/V Laura Bassi from 6th of January to February 16, 2020, along the sailing route from Lyttelton harbor (New Zealand) to Terra Nova Bay (Antarctica). Levoglucosan and its isomers have been analyzed as markers of BB, together with polycyclic aromatic hydrocarbons (PAHs), sucrose and alcohol sugars. Ionic species and carboxylic acids have been analyzed to support the identification of aerosol sources and its aging. Results showed high levoglucosan concentrations (325–1266 pg m− 3 ) during the campaign, suggesting the widespread presence of smoke in the region, because of huge wildfire releases. Backward trajectories indicated the presence of long-range atmospheric transport from South America, probably carrying wildfires plume, in agreement with literature. Regional sources have been suggested for PAHs, particularly for 3–4 rings’ compounds; monosaccharides, sucrose, arabitol, and mannitol were related to marine and biogenic contributions. In a warming climate scenario, more frequent and extensive wildfire episodes are expected in Australia, potentially altering albedo, aerosol radiative properties, and cloud interactions. Therefore, it is crucial to strengthens the investigations on the regional climatic effects of these events in Antarctica

    Organic micropollutants in wet and dry depositions in the Venice Lagoon

    Get PDF
    Atmospheric transport is an important route by which pollutants are conveyed from the continents to both coastal and open sea. The role of aerosol deposition in the transport of polycyclic aromatic hydrocarbons (PAHs), polychlorobiphenyls (PCBs) and polybromodiphenyls ethers (PBDEs) to water and soil systems has been evaluated by measuring their concentrations in wet and dry depositions to the Venice Lagoon. The organic micropollutant flux data indicate that they contribute to the total deposition flux in different ways through wet and dry deposition, showing that the prevalent contribution derives from wet deposition. The fluxes calculated for PBDEs, showed the prevalence of 47, 99, 100 and 183 congeners, both in dry and wet fluxes. With regard to PCBs, the flux of PPCB for wet deposition is in the same order of magnitude of the diffusive flux at the air–water interface. The PAH fluxes obtained in the present study are similar to those obtained in previous studies on the atmospheric bulk deposition to the Venice Lagoon. The ratios between Phe/Ant and Fl/Py indicate that the pollutants sources are pyrolytic, deriving from combustion fuels

    Dysregulation of MS risk genes and pathways at distinct stages of disease

    Get PDF
    OBJECTIVE: To perform systematic transcriptomic analysis of multiple sclerosis (MS) risk genes in peripheral blood mononuclear cells (PBMCs) of subjects with distinct MS stages and describe the pathways characterized by dysregulated gene expressions. METHODS: We monitored gene expression levels in PBMCs from 3 independent cohorts for a total of 297 cases (including clinically isolated syndromes (CIS), relapsing-remitting MS, primary and secondary progressive MS) and 96 healthy controls by distinct microarray platforms and quantitative PCR. Differential expression and pathway analyses for distinct MS stages were defined and validated by literature mining. RESULTS: Genes located in the vicinity of MS risk variants displayed altered expression in peripheral blood at distinct stages of MS compared with the healthy population. The frequency of dysregulation was significantly higher than expected in CIS and progressive forms of MS. Pathway analysis for each MS stage–specific gene list showed that dysregulated genes contributed to pathogenic processes with scientific evidence in MS. CONCLUSIONS: Systematic gene expression analysis in PBMCs highlighted selective dysregulation of MS susceptibility genes playing a role in novel and well-known pathogenic pathways

    Impact of treatment with dimethyl fumarate on sleep quality in patients with relapsing-remitting multiple sclerosis: A multicentre Italian wearable tracker study

    Get PDF
    BackgroundSleep disorders are common in patients with multiple sclerosis and have a bidirectional interplay with fatigue and depression. ObjectiveTo evaluate the effect of treatment with oral dimethyl fumarate on the quality of sleep in relapsing-remitting multiple sclerosis. MethodsThis was a multicentre observational study with 223 relapsing-remitting multiple sclerosis subjects starting treatment with dimethyl fumarate (n=177) or beta interferon (n=46). All patients underwent subjective (Pittsburgh Sleep Quality Index) and objective (wearable tracker) measurements of quality of sleep. Fatigue, depression, and quality of life were also investigated and physical activity was monitored. ResultsPatients treated with dimethyl fumarate had significant improvement in the quality of sleep as measured with the Pittsburgh Sleep Quality Index (p<0.001). At all-time points, no significant changes in Pittsburgh Sleep Quality Index score were observed in the interferon group. Total and deep sleep measured by wearable tracker decreased at week 12 with both treatments, then remained stable for the total study duration. Depression significantly improved in patients treated with dimethyl fumarate. No significant changes were observed in mobility, fatigue and quality of life. ConclusionIn patients with relapsing-remitting multiple sclerosis, the treatment with dimethyl fumarate was associated with improvements in patient-reported quality of sleep. Further randomised clinical trials are needed to confirm the benefits of long-term treatment with dimethyl fumarate

    Disease-modifying therapies and coronavirus disease 2019 severity in multiple sclerosis

    Get PDF
    OBJECTIVE: This study was undertaken to assess the impact of immunosuppressive and immunomodulatory therapies on the severity of coronavirus disease 2019 (COVID-19) in people with multiple sclerosis (PwMS).METHODS: We retrospectively collected data of PwMS with suspected or confirmed COVID-19. All the patients had complete follow-up to death or recovery. Severe COVID-19 was defined by a 3-level variable: mild disease not requiring hospitalization versus pneumonia or hospitalization versus intensive care unit (ICU) admission or death. We evaluated baseline characteristics and MS therapies associated with severe COVID-19 by multivariate and propensity score (PS)-weighted ordinal logistic models. Sensitivity analyses were run to confirm the results.RESULTS: Of 844 PwMS with suspected (n = 565) or confirmed (n = 279) COVID-19, 13 (1.54%) died; 11 of them were in a progressive MS phase, and 8 were without any therapy. Thirty-eight (4.5%) were admitted to an ICU; 99 (11.7%) had radiologically documented pneumonia; 96 (11.4%) were hospitalized. After adjusting for region, age, sex, progressive MS course, Expanded Disability Status Scale, disease duration, body mass index, comorbidities, and recent methylprednisolone use, therapy with an anti-CD20 agent (ocrelizumab or rituximab) was significantly associated (odds ratio [OR] = 2.37, 95% confidence interval [CI] = 1.18-4.74, p =0.015) with increased risk of severe COVID-19. Recent use (<1month) of methylprednisolone was also associated with a worse outcome (OR = 5.24, 95% CI = 2.20-12.53, p =0.001). Results were confirmed by the PS-weighted analysis and by all the sensitivity analyses.INTERPRETATION: This study showed an acceptable level of safety of therapies with a broad array of mechanisms of action. However, some specific elements of risk emerged. These will need to be considered while the COVID-19 pandemic persists. ANN NEUROL 2021

    Association of Genetic Markers with CSF Oligoclonal Bands in Multiple Sclerosis Patients

    Get PDF
    Objective:to explore the association between genetic markers and Oligoclonal Bands (OCB) in the Cerebro Spinal Fluid (CSF) of Italian Multiple Sclerosis patients.Methods:We genotyped 1115 Italian patients for HLA-DRB1*15 and HLA-A*02. In a subset of 925 patients we tested association with 52 non-HLA SNPs associated with MS susceptibility and we calculated a weighted Genetic Risk Score. Finally, we performed a Genome Wide Association Study (GWAS) with OCB status on a subset of 562 patients. The best associated SNPs of the Italian GWAS were replicated in silico in Scandinavian and Belgian populations, and meta-analyzed.Results:HLA-DRB1*15 is associated with OCB+: p = 0.03, Odds Ratio (OR) = 1.6, 95% Confidence Limits (CL) = 1.1-2.4. None of the 52 non-HLA MS susceptibility loci was associated with OCB, except one SNP (rs2546890) near IL12B gene (OR: 1.45; 1.09-1.92). The weighted Genetic Risk Score mean was significantly (p = 0.0008) higher in OCB+ (7.668) than in OCB- (7.412) patients. After meta-analysis on the three datasets (Italian, Scandinavian and Belgian) for the best associated signals resulted from the Italian GWAS, the strongest signal was a SNP (rs9320598) on chromosome 6q (p = 9.4×10-7) outside the HLA region (65 Mb).Discussion:genetic factors predispose to the development of OCB

    SARS-CoV-2 vaccination and multiple sclerosis: a large multicentric study on relapse risk after the third booster dose

    Get PDF
    Background: COVID-19 vaccines have been recommended to people with multiple sclerosis (pwMS) and, to ensure durable immunity, a third booster dose has been administered in several countries. Data about potential risks associated with the third booster dose in pwMS, such as vaccine-triggered disease exacerbations, are still scarce. Objective: To investigate whether the administration of a third booster dose of mRNA COVID-19 vaccines was associated with an increased risk of short-term disease reactivation in a large cohort of pwMS. Methods: We retrospectively selected 1265 pwMS who received a third booster dose of an mRNA COVID-19 vaccine. Demographic and clinical data were collected, including the presence, number and characteristics of relapses in the 60 days prior to and after the third booster dose. Results: In the selected cohort, the relapse rate in the two months after administration of the third booster dose of mRNA COVID-19 vaccines did not increase when compared with the prior two months. Indeed, the percentage of pwMS experiencing relapses in the 60 days following the administration of the third booster dose was 2.1%, similar to the percentage recorded in 60 days prior to vaccination, which was 1.9%. Conclusions: The third booster dose of mRNA COVID-19 vaccines appeared to be safe for pwMS
    corecore