222 research outputs found

    Ethanolamine activates a sensor histidine kinase regulating its utilization in Enterococcus faecalis

    Get PDF
    Enterococcus faecalis is a gram-positive commensal bacterium of the human intestinal tract. Its opportunistic pathogenicity has been enhanced by the acquisition of multiple antibiotic resistances, making the treatment of enterococcal infections an increasingly difficult problem. The extraordinary capacity of this organism to colonize and survive in a wide variety of ecological niches is attributable, at least in part, to signal transduction pathways mediated by two-component systems (TCS). Here, the ability of E. faecalis to utilize ethanolamine as the sole carbon source is shown to be dependent upon the RR-HK17 (EF1633-EF1632) TCS. Ethanolamine is an abundant compound in the human intestine, and thus, the ability of bacteria to utilize it as a source of carbon and nitrogen may provide an advantage for survival and colonization. Growth of E. faecalis in a synthetic medium with ethanolamine was abolished in the response regulator RR17 mutant strain. Transcription of the response regulator gene was induced by the presence of ethanolamine. Ethanolamine induced a 15-fold increase in the rate of autophosphorylation in vitro of the HK17 sensor histidine kinase, indicating that this is the ligand recognized by the sensor domain of the kinase. These results assign a role to the RR-HK17 TCS as coordinator of the enterococcal response to specific nutritional conditions existing at the site of bacterial invasion, the intestinal tract of an animal host.Facultad de Ciencias ExactasInstituto de Biotecnologia y Biologia Molecula

    Enterococcus faecalis virulence regulator FsrA binding to target promoters

    Get PDF
    The FsrABDC signal transduction system is a major virulence regulator in Enterococcus faecalis. The FsrC sensor histidine kinase, upon activation by the gelatinase biosynthesis-activating pheromone (GBAP) peptide encoded by the fsrBD genes, phosphorylates the FsrA response regulator required for the transcription of the fsrBDC and the gelE-sprE genes from the fsrB promoter and the gelE promoter, respectively. FsrA belongs to the LytTR family of proteins, which includes other virulence regulators, such as AgrA of Staphylococcus aureus, AlgR of Pseudomonas aeruginosa, and VirR of Clostridium perfringens. The LytTR DNA-binding domain that characterizes these proteins generally binds to two imperfect direct repeats separated by a number of bases that place the repeats on the same face of the DNA helix. In this study, we demonstrated that FsrA also binds to two imperfect direct repeats separated by 13 bp, based on the consensus sequence of FsrA, T/AT/CAA/GG GAA/G, which is consistent with the binding characteristics of LytTR domains.Instituto de Biotecnologia y Biologia Molecula

    Dubbing vs. Subtitling: Complexity Matters

    Get PDF
    Despite the claims on the potential disruptiveness of subtitling for audiovisual processing, existing empirical evidence supports the idea that subtitle processing is semi-automatic and cognitively effective, and that, in moderately complex viewing scenarios, dubbing does not necessarily help viewers. In this paper we appraise whether the complexity of the translated audiovisual material matters for the cognitive (i.e., regarding comprehension and memory) and evaluative reception of subtitled vs. dubbed audiovisual material. To this aim, we present the results of two studies on the viewers\u2019 reception of film translation (dubbing vs. subtitling), in which we investigate the cognitive and evaluative consequences of audiovisual complexity. In Study 1, the results show that a moderately complex film is processed effectively and it is enjoyed irrespective of the translation method. However, in Study 2, the subtitling (vs. dubbing) of a more complex film leads to more effortful processing and lower cognitive performance, but not to a lessened appreciation. These results expose the boundaries of subtitle processing, which are reached only when the audiovisual material to be processed is complex, and they encourage scholars and practitioners to reconsider old standards as well as to invest more effort in crafting diverse types of audiovisual translations tailored both on the degree of complexity of the source product and on the individual differences of the target viewers

    Full activation of Enterococcus faecalis gelatinase by a C-terminal proteolytic cleavage

    Get PDF
    Enterococci account for nearly 10% of all nosocomial infections and constitute a significant treatment challenge due to their multidrug resistance properties. One of the well-studied virulence factors of Enterococcus faecalis is a secreted bacterial protease, termed gelatinase, which has been shown to contribute to the process of biofilm formation. Gelatinase belongs to the M4 family of bacterial zinc metalloendopeptidases, typified by thermolysin. Gelatinase is synthesized as a preproenzyme consisting of a signal sequence, a putative propeptide, and then the mature enzyme. We determined that the molecular mass of the mature protein isolated from culture supernatant was 33,030 Da, which differed from the predicted molecular mass, 34,570 Da, by over 1,500 Da. Using N-terminal sequencing, we confirmed that the mature protein begins at the previously identified sequence VGSEV, thus suggesting that the 1,500-Da molecular mass difference resulted from a C-terminal processing event. By using mutants with site-directed mutations within a predicted C-terminal processing site and mutants with C-terminal deletions fused to a hexahistidine tag, we determined that the processing site is likely to be between residues D304 and 1305 and that it requires the Q306 residue. The results suggest that the E. faecalis gelatinase requires C-terminal processing for full activation of protease activity, making it a unique enzyme among the members of the M4 family of proteases of gram-positive bacteria.Instituto de Biotecnologia y Biologia Molecula

    Ethanolamine activates a sensor histidine kinase regulating its utilization in Enterococcus faecalis

    Get PDF
    Enterococcus faecalis is a gram-positive commensal bacterium of the human intestinal tract. Its opportunistic pathogenicity has been enhanced by the acquisition of multiple antibiotic resistances, making the treatment of enterococcal infections an increasingly difficult problem. The extraordinary capacity of this organism to colonize and survive in a wide variety of ecological niches is attributable, at least in part, to signal transduction pathways mediated by two-component systems (TCS). Here, the ability of E. faecalis to utilize ethanolamine as the sole carbon source is shown to be dependent upon the RR-HK17 (EF1633-EF1632) TCS. Ethanolamine is an abundant compound in the human intestine, and thus, the ability of bacteria to utilize it as a source of carbon and nitrogen may provide an advantage for survival and colonization. Growth of E. faecalis in a synthetic medium with ethanolamine was abolished in the response regulator RR17 mutant strain. Transcription of the response regulator gene was induced by the presence of ethanolamine. Ethanolamine induced a 15-fold increase in the rate of autophosphorylation in vitro of the HK17 sensor histidine kinase, indicating that this is the ligand recognized by the sensor domain of the kinase. These results assign a role to the RR-HK17 TCS as coordinator of the enterococcal response to specific nutritional conditions existing at the site of bacterial invasion, the intestinal tract of an animal host.Facultad de Ciencias ExactasInstituto de Biotecnologia y Biologia Molecula

    Enterococcus faecalis virulence regulator FsrA binding to target promoters

    Get PDF
    The FsrABDC signal transduction system is a major virulence regulator in Enterococcus faecalis. The FsrC sensor histidine kinase, upon activation by the gelatinase biosynthesis-activating pheromone (GBAP) peptide encoded by the fsrBD genes, phosphorylates the FsrA response regulator required for the transcription of the fsrBDC and the gelE-sprE genes from the fsrB promoter and the gelE promoter, respectively. FsrA belongs to the LytTR family of proteins, which includes other virulence regulators, such as AgrA of Staphylococcus aureus, AlgR of Pseudomonas aeruginosa, and VirR of Clostridium perfringens. The LytTR DNA-binding domain that characterizes these proteins generally binds to two imperfect direct repeats separated by a number of bases that place the repeats on the same face of the DNA helix. In this study, we demonstrated that FsrA also binds to two imperfect direct repeats separated by 13 bp, based on the consensus sequence of FsrA, T/AT/CAA/GG GAA/G, which is consistent with the binding characteristics of LytTR domains.Instituto de Biotecnologia y Biologia Molecula

    Refractive index inhomogeneity within an aerogel block

    Get PDF
    Evaluating local inhomogeneities of the refractive index inside aerogel blocks to be used as Cherenkov radiator is important for a high energy physics experiment where angular resolution is crucial. Two approaches are described and compared. The first one is based on the bending of a laser beam induced by refractive index gradients along directions normal to the unperturbed optical path. The second method exploits the Cherenkov effect itself by shooting an ultra-relativistic collimated electron beam through different points of the aerogel surface. Local refractive index variations result in sizable differences in the Cherenkov photons distribution. © 2005 Elsevier B.V. All rights reserved

    Study of the preanalytical variables affecting the measurement of clinically relevant free-circulating microRNAs: focus on sample matrix, platelet depletion, and storage conditions

    Get PDF
    Introduction: Circulating microRNAs (miRNAs) are emerging as potential biomarkers. However, the lack of preanalytical and analytical standardization limits their use. The aim of this study was to determine the expression of different miRNAs in plasma according to different collection and storage conditions. Materials and methods: Venous blood from 10 volunteers was collected in tubes spray-coated with dipotassium salt of ethylendiaminetetraacetic acid, either with (plasma-preparation tube, PPT) or without (K2EDTA) gel separator. Platelet-poor plasma (PPP) was also obtained from K2EDTA plasma. After storage under different conditions, miRNA-enriched total RNA was isolated from plasma and reverse transcribed. A panel of 179 miRNAs was assayed by quantitative polymerase chain reaction and the results were analysed by GenEx software. Detectability and stability of miRNAs were determined. Results: The number of undetected miRNAs was: 18, 24, and 22 in PPT; 83, 43, and 20 in K2EDTA; and 76, 106, and 104 in PPP samples, for plasma immediately frozen at - 80°C and plasma stored for 24h at room temperature or 4°C, respectively. Circulating miRNA expression in PPT samples was not affected by storage delay or temperature, while the percentage of up- and down-regulated miRNA in K2EDTA and PPP samples ranged from 2%, and 1% to 7%, and 5%, respectively. Conclusions: Sample matrix, temperature and delay in storage strongly influence the expression level of plasma miRNAs. Our results indicate PPT tubes as the most suitable matrix to improve total miRNA detectability and stability, independently of temperature

    Low-Molecular-Weight Protein Tyrosine Phosphatases of Bacillus subtilis

    Full text link
    In gram-negative organisms, enzymes belonging to the low-molecular-weight protein tyrosine phosphatase (LMPTP) family are involved in the regulation of important physiological functions, including stress resistance and synthesis of the polysaccharide capsule. LMPTPs have been identified also in gram-positive bacteria, but their functions in these organisms are presently unknown. We cloned two putative LMPTPs from Bacillus subtilis, YfkJ and YwlE, which are highly similar to each other in primary structure as well as to LMPTPs from gram-negative bacteria. When purified from overexpressing Escherichia coli strains, both enzymes were able to dephosphorylate p-nitrophenyl-phosphate and phosphotyrosine-containing substrates in vitro but showed significant differences in kinetic parameters and sensitivity to inhibitors. Transcriptional analyses showed that yfkJ was transcribed at a low level throughout the growth cycle and underwent a σB-dependent transcriptional upregulation in response to ethanol stress. The transcription of ywlE was growth dependent but stress insensitive. Genomic deletion of each phosphatase-encoding gene led to a phenotype of reduced bacterial resistance to ethanol stress, which was more marked in the ywlE deletion strain. Our study suggests that YfkJ and YwlE play roles in B. subtilis stress resistance

    Aerogel at colliders

    Get PDF
    Recent progress in the application of silica aerogel as Cherenkov radiator for present and future collider experiments are reviewed. A complete characterization of the optical and physical properties of silica aerogel will be described, as well as robustness tests towards potentially aggressive experimental conditions such as high irradiation or exposed to fluorocarbons are reported. Finally, recent tests performed with a multilayer aerogel block will be presented and discussed
    corecore