2 research outputs found

    Towards a new approach for dendroprovenancing pines in the Mediterranean Iberian Peninsula

    Get PDF
    Dendroprovenancing studies frequently use site chronologies to identify the origin of archaeological and historical timber. However, radial growth (tree-ring width, TRW) of tree species is influenced by both local and regional climate scales. Here we investigate how the use of annually-resolved Blue Intensity (BI) measurements can enhance dendroprovenancing precision of black pine (Pinus nigra Arn.) and Scots pine (P. sylvestris L.) on the Iberian Peninsula. Principal Component Gradient Analyses (PCGA) was used to assess geographical patterns of annual variation in different TRW and BI proxies of pine trees from two mountain ranges in the Central System and Andalusia in Spain. Local climate-growth relationships were quantified to identify underlying causes of identified groups with diverse growth patterns. Two distinct elevational groups were observed when performing PCGA on latewood BI time series with the response to summer drought as the main factor causing the differences. Both P. nigra and P. sylvestris BI time series were found to be more related to summer drought at low-elevation sites showing an increase in sensitivity at lower latitudes. PCGA of TRW time series allowed to discriminate between trees from Andalusia and Central System within the elevation groups. February and October temperatures were found to be the main climatic factors causing the differences in TRW time series among the high- elevation sites, whereas for low-elevation trees it was the average winter temperature influencing TRW. A subsequent leave-one-out analyses confirmed that including latewood BI time series improves the precision of dendroprovenancing of pine wood in the Iberian Peninsula.</p
    corecore