1 research outputs found

    Modulated Amplitude Waves and Defect Formation in the One-Dimensional Complex Ginzburg-Landau Equation

    Get PDF
    The transition from phase chaos to defect chaos in the complex Ginzburg-Landau equation (CGLE) is related to saddle-node bifurcations of modulated amplitude waves (MAWs). First, the spatial period P of MAWs is shown to be limited by a maximum P_SN which depends on the CGLE coefficients; MAW-like structures with period larger than P_SN evolve to defects. Second, slowly evolving near-MAWs with average phase gradients ν0\nu \approx 0 and various periods occur naturally in phase chaotic states of the CGLE. As a measure for these periods, we study the distributions of spacings p between neighboring peaks of the phase gradient. A systematic comparison of p and P_SN as a function of coefficients of the CGLE shows that defects are generated at locations where p becomes larger than P_SN. In other words, MAWs with period P_SN represent ``critical nuclei'' for the formation of defects in phase chaos and may trigger the transition to defect chaos. Since rare events where p becomes sufficiently large to lead to defect formation may only occur after a long transient, the coefficients where the transition to defect chaos seems to occur depend on system size and integration time. We conjecture that in the regime where the maximum period P_SN has diverged, phase chaos persists in the thermodynamic limit.Comment: 25 pages, 18 figure
    corecore