173 research outputs found

    Elastic properties of woven bone: effect of mineral content and collagen fibrils orientation

    Get PDF
    Woven bone is a type of tissue that forms mainly during fracture healing or fetal bone development. Its microstructure can be modeled as a composite with a matrix of mineral (hydroxyapatite) and inclusions of collagen fibrils with a more or less random orientation. In the present study, its elastic properties were estimated as a function of composition (degree of mineralization) and fibril orientation. A self-consistent homogenization scheme considering randomness of inclusions’ orientation was used for this purpose. Lacuno-canalicular porosity in the form of periodically distributed void inclusions was also considered. Assuming collagen fibrils to be uniformly oriented in all directions led to an isotropic tissue with a Young’s modulus E= 1.90 GPa, which is of the same order of magnitude as that of woven bone in fracture calluses. By contrast, assuming fibrils to have a preferential orientation resulted in a Young’s modulus in the preferential direction of 9–16 GPa depending on the mineral content of the tissue. These results are consistent with experimental evidence for woven bone in foetuses, where collagen fibrils are aligned to a certain extent

    Comparison of the volumetric composition of lamellar bone and the woven bone of calluses

    Get PDF
    Woven tissue is mainly present in the bone callus, formed very rapidly either after a fracture or in distraction processes. This high formation speed is probably responsible for its disorganized microstructure and this, in turn, for its low stiffness. Nonetheless, the singular volumetric composition of this tissue may also play a key role in its mechanical properties. The volumetric composition of woven tissue extracted from the bone transport callus of sheep was investigated and compared with that of the lamellar tissue extracted from the cortical shell of the same bone. Significant differences were found in the mineral and water contents, but they can be due to the different ages of both tissues, which affects the mineral/water ratio. However, the content in organic phase remains more or less constant throughout the mineralization process and has proven to be a good variable to measure the different composition of both tissues, being that content significantly higher in woven tissue. This may be linked to the abnormally high concentration of osteocytes in this tissue, which is likely a consequence of the more abundant presence of osteoblasts secreting osteoid and burying other osteoblasts, which then differentiate into osteocytes. This would explain the high formation rate of woven tissue, useful to recover the short-term stability of the bone. Nonetheless, the more abundant presence of organic phase prevents the woven tissue from reaching a stiffness similar to that of lamellar tissue in the long term, when it is fully mineralized

    Editorial: Bone integrity in patients with osteoporosis: Evaluation of fracture risk and influence of pharmacological treatments and mechanical aspects

    Get PDF
    This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms

    Automatic grading of student-specific exercises in large groups of the subject theory of machines and mechanisms

    Get PDF
    This study establishes an already defined and tested method to grade exercises of kinematics and dynamics within the course entitled “Theory of Machines and Mechanisms” of the Industrial Technologies Engineering Degree at the Seville School of Engineering (Spain). Particular emphasis is made on the automation of grading and personalization of the exercises, due to the large number of students enrolled in this course. The former is made through a teaching platform available at the University of Seville and called Doctus, whilst the latter is achieved by defining the input data of the exercises and the requested results as a function of the digits of the student’s ID. The students must face and solve a personalized problem by their own with the knowledge and competences acquired during the academic course. This paper describes the exercises and the tools used to grade them and shows the satisfactory results obtained with these exercises after three academic courses

    A bone remodelling model including the effect of damage on the steering of BMUs

    Get PDF
    Bone remodelling in cortical bone is performed by the so-called basic multicellular units (BMUs), which produce osteons after completing the remodelling sequence. Burger et al. (2003) hypothesized that BMUs follow the direction of the prevalent local stress in the bone. More recently, Martin (2007) has shown that BMUs must be somehow guided by microstructural damage as well. The interaction of both variables, strain and damage, in the guidance of BMUs has been incorporated into a bone remodelling model for cortical bone. This model accounts for variations in porosity, anisotropy and damage level. The bone remodelling model has been applied to a finite element model of the diaphysis of a human femur. The trajectories of the BMUs have been analysed throughout the diaphysis and compared with the orientation of osteons measured experimentally. Some interesting observations, like the typical fan arrangement of osteons near the periosteum, can be explained with the proposed remodelling model. Moreover, the efficiency of BMUs in damage repairing has been shown to be greater if BMUs are guided by damage

    Internet of things in health: Requirements, issues, and gaps

    Get PDF
    Background and objectives: The Internet of Things (IoT) paradigm has been extensively applied to several sectors in the last years, ranging from industry to smart cities. In the health domain, IoT makes possible new scenarios of healthcare delivery as well as collecting and processing health data in real time from sensors in order to make informed decisions. However, this domain is complex and presents several tech- nological challenges. Despite the extensive literature about this topic, the application of IoT in healthcare scarcely covers requirements of this sector. Methods: A literature review from January 2010 to February 2021 was performed resulting in 12,108 articles. After filtering by title, abstract, and content, 86 were eligible and examined according to three requirement themes: data lifecycle; trust, security, and privacy; and human-related issues. Results: The analysis of the reviewed literature shows that most approaches consider IoT application in healthcare merely as in any other domain (industry, smart cities…), with no regard of the specific requirements of this domain. Conclusions: Future effort s in this matter should be aligned with the specific requirements and needs of the health domain, so that exploiting the capabilities of the IoT paradigm may represent a meaningful step forward in the application of this technology in healthcare.Consejería de Conocimiento, Investigación y Universidad, Junta de Andalucía P18-TPJ - 307

    On the Use of Bone Remodelling Models to Estimate the Density Distribution of Bones. Uniqueness of the Solution

    Get PDF
    Bone remodelling models are widely used in a phenomenological manner to estimate numerically the distribution of apparent density in bones from the loads they are daily subjected to. These simulations start from an arbitrary initial distribution, usually homogeneous, and the density changes locally until a bone remodelling equilibrium is achieved. The bone response to mechanical stimulus is traditionally formulated with a mathematical relation that considers the existence of a range of stimulus, called dead or lazy zone, for which no net bone mass change occurs. Implementing a relation like that leads to different solutions depending on the starting density. The non-uniqueness of the solution has been shown in this paper using two different bone remodelling models: one isotropic and another anisotropic. It has also been shown that the problem of non-uniqueness is only mitigated by removing the dead zone, but it is not completely solved unless the bone formation and bone resorption rates are limited to certain maximum values.Ministerio de Economía y Competitividad DPI2013-44371-PMinisterio de Economía y Competitividad DPI2014-58233-

    About kinematic consistency in the inverse dynamics problem in biomechanics

    Get PDF
    No se encuentra entidad editora.The inverse dynamic analysis is used in the study of the human gait to evaluate the reaction forces transmitted between anatomical segments and to calculate the net joint moments resulting from the muscle activity in each joint. There are two approaches well defined. In the clinical field reconstruction techniques are often applied. The errors caused, mainly, by the relative movement of the skin over the bones make that the joint centres localized in two adjacent segments do not place the same position in the space. Velocities and accelerations are obtained through numerical derivation of the position. Finally, joint moment are calculated to balance the equilibrium equations. On the other hand, the engineers employ multibody models. They apply techniques to reduce the measurement errors and to obtain kinematically consistent data up to the acceleration level and calculate reaction and driving actions by means of the Lagrange multipliers. There is no agreement about which approach provides better results. The first procedure presents errors due to the skin motion which are avoid in the second method introducing errors inherent to the model. In this work, the two approaches were compared. Dynamic residuals defined to balance the Newton's equations were used as a measure of the model goodness. A discussion about the effect of the kinematically inconsistent data on the second approach was carried out. Results highlighted that the addition to the recorded motion of kinematic constrains according to a multibody model could lead to worse results in the inverse dynamic problem

    A polynomial hyperelastic model for the mixture of fat and glandular tissue in female breast

    Get PDF
    In the breast of adult women, glandular and fat tissues are intermingled and cannot be clearly distinguished. This work studies if this mixture can be treated as a homogenized tissue. A mechanical model is proposed for the mixture of tissues as a function of the fat content. Different distributions of individual tissues and geometries have been tried to verify the validity of the mixture model. A multiscale modelling approach was applied in a finite element model of a representative volume element (RVE) of tissue, formed by randomly assigning fat or glandular elements to the mesh. Both types of tissues have been assumed as isotropic, quasi-incompressible hyperelastic materials, modelled with a polynomial strain energy function, like the homogenized model. The RVE was subjected to several load cases from which the constants of the polynomial function of the homogenized tissue were fitted in the least squares sense. The results confirm that the fat volume ratio is a key factor in determining the properties of the homogenized tissue, but the spatial distribution of fat is not so important. Finally, a simplified model of a breast was developed to check the validity of the homogenized model in a geometry similar to the actual one

    Evolution of relaxation properties of callus tissue during bone transport

    Get PDF
    Callus tissue exhibits a viscoelastic behavior that has a strong influence on the distribution of stresses and their evolution with time and, thus, it can affect tissue differentiation during distraction procedures. For this reason, a deep knowledge of that viscoelastic behavior can be very useful to improve current protocols of bone distraction and bone transport. Monitoring stress relaxation of the callus during distraction osteogenesis allows characterizing its viscoelastic behavior. Different procedures have been used in the literature to fit the response of a given viscoelastic model to the force relaxation curve. However, these procedures do not ensure the uniqueness of that fit, which is of the utmost importance for statistical purposes. This work uses a fitting procedure already validated for other tissues that ensures that uniqueness. Very importantly too, the procedure presented here allows obtaining more information from the stress relaxation tests, distinguishing relaxation in different time scales, which provides a deeper insight into the viscoelastic behavior and its evolution over time. As it was observed in the results, relaxation is faster at the first days after osteotomy and becomes slower and more gradual with time. This fact can be directly linked to the temporal evolution of the callus composition (water, organic phase, and mineral content) and also to the progression of tissue differentiation, with a prevalence of hard tissues as time passes
    corecore