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Abstract

Bone remodelling in cortical bone is performed by the so-called basic multicel-
lular units (BMUs), which produce osteons after completing the remodelling
sequence. Burger et al. (2003) hypothesized that BMUs follow the direction
of the prevalent local stress in the bone. More recently, Martin (2007) has
shown that BMUs must be somehow guided by microstructural damage as
well. The interaction of both variables, strain and damage, in the guidance
of BMUs has been incorporated into a bone remodelling model for cortical
bone. This model accounts for variations in porosity, anisotropy and dam-
age level. The bone remodelling model has been applied to a finite element
model of the diaphysis of a human femur. The trajectories of the BMUs have
been analysed throughout the diaphysis and compared with the orientation
of osteons measured experimentally. Some interesting observations, like the
typical fan arrangement of osteons near the periosteum, can be explained
with the proposed remodelling model. Moreover, the efficiency of BMUs
in damage repairing has been shown to be greater if BMUs are guided by
damage.
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1. Introduction.

Simulation of bone remodelling is a classic problem in Biomechanics but
it continues receiving attention (see e.g. (Hartmann et al., 2011; Kaczmar-
czyk et al., 2011; Malachanne et al., 2012)) for its importance in clinical
applications (see e.g. (Prendergast et al., 2011; Tomaszewski et al., 2012))
and because many questions are still open and need further investigation. In
this work some of those questions are addressed to propose a model of bone
remodelling in cortical bone.

Cortical bone is usually assumed to be a transversely isotropic material,
being its mechanical properties strongly influenced by the orientation of os-
teons. More precisely, the longitudinal axis of the osteons is the perpendicular
to the plane of isotropy (Yoon and Cowin, 2008a, 2008b). The orientation of
an osteon is given by the trajectory followed by osteoclasts and osteoblasts,
which act sequentially in an association of cells called BMU (Basic Multi-
cellular Unit) to form the osteon. This paper provides some insights about
some mechanisms that could regulate that trajectory.

The direction followed by BMUs in their progression is not clear. Burger
et al. (2003) proposed that they follow the direction of the prevalent lo-
cal stress: either maximum or minimum principal stress, whichever has a
higher absolute value. Their argument is based on the fact that osteoclasts
are attracted to sites of low mechanical stimulus, with osteocytes playing an
important role in this attraction. If the trajectory of the BMU is aligned
with the maximum stress direction (or minimum stress direction in compres-
sive situations), the area in front of the cutting cone is a low stimulus area
(recall the stress distribution around a hole subjected to far-field stresses in
one direction) and, thus, more osteoclasts will be attracted to the front of
the cutting cone to continue resorbing bone in the maximum (or minimum)
principal stress direction. This alignment of osteons with principal stress di-
rections has been implemented in some bone remodelling models (van Oers
et al., 2008a, 2008b) including one developed by the authors (Mart́ınez-Reina
et al., 2009). In the case of long bones, compressive, bending and torsional
stresses would lead, on that assumption, to trajectories that spiral slightly
around and through the cortex at low angles in opposite directions on the lat-
eral and contralateral sides of the bone, merging to a longitudinal trajectory
anteriorly and posteriorly (Heřt et al., 1994; Petrtýl et al., 1996).

However, Martin (2007) showed that BMUs must be driven by another
equally important factor: damage. More precisely, with a clear objective:
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damage removal. This author claimed that, in case BMUs tunnelled through
cortical bone at random locations, but following straight trajectories, they
would need to have a greater cross-section (40 times) than they actually
have, in order to repair damage with the efficiency observed experimentally.
Another plausible explanation for that high efficiency would be, following
Martin, that BMUs do not resorb bone at random locations, but they are
steered toward the damaged areas. In this guidance, apoptotic osteocytes
would play a key role, as they did in the hypothesis of Burger et al. (2003).
In this case, osteocytes close to the damaged areas might undergo apoptosis
and produce biochemical signals that attract osteoclasts, this way steering
the BMU toward the damaged area.

In this work, we propose a new bone remodelling model (from this point
on referred to as strain and damage-based model) incorporating a possible
steering of BMUs by damage (apart from by principal strain directions) into
a previously developed bone remodelling model, referred to as old model
(Mart́ınez-Reina et al., 2009). Other modifications have also been included
in the strain and damage-based model and are explained in detail in the next
section.

Moreover, a variation of the strain and damage-based model, named strain-
based model and obtained by deactivating the steering of BMUs by damage,
is also presented. Both, the strain and damage-based model and the strain-
based model have been applied to the diaphysis of a human femur subjected
to normal walking loads.

The general objective of this paper is to analyse how the guidance of
BMUs regulated by damage may explain the actual orientations of osteons
in long bones. In particular, to show how this guidance can explain certain
phenomena that the hypothesis of Burger et al. (2003), of osteoclasts follow-
ing the direction of the prevalent local stress, cannot. These phenomena are:
the high efficiency of BMUs in damage repairing, confirmed by the observa-
tions of Martin (2007), and the typical fan arrangement of osteons near the
periosteum.

2. Materials and Methods.

2.1. Old model. Activation and remodelling effect of BMUs

The old model (Mart́ınez-Reina et al., 2009) is an extension of a previous
isotropic one (Garćıa-Aznar et al., 2005) to the anisotropic case. Such exten-
sion was intended to include the orientation of osteons and its influence on the
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anisotropy of bone tissue. The activation and the remodelling effect of BMUs
is similarly implemented in both models (isotropic and anisotropic) and is
briefly explained next. Nevertheless, consulting both papers (Mart́ınez-Reina
et al., 2009; Garćıa-Aznar et al., 2005) is advised for a further comprehension
of the concepts presented in this section.

Bone remodelling is carried out by the so-called BMU (Basic Multicellu-
lar Unit), a temporal association of tissue-resorbing osteoclasts and tissue-
forming osteoblasts working in a coupled and sequential way. The number
of active BMUs is controlled by their lifespan, σL, and the BMU activation
frequency, ṄBMU . This frequency provides the number of BMUs activated
per unit time and unit volume and is given in the old model by:

ṄBMU = fbio(1 − s)Sv (1)

where Sv represents the bone specific surface (bone matrix surface per unit
volume). This variable is a function of porosity (Martin, 1984) and its inclu-
sion in equation (1) accounts for the fact that the activation of BMUs takes
place on the bone matrix surface. fbio is a parameter including all the bio-
logical and metabolic factors that influence on the activation of BMUs and
is assumed to be a constant in this work. Finally, s represents the intensity
of a certain mechanobiological signal which inhibits the activation of BMUs.
This model follows the inhibitory theory proposed by Martin (Martin, 2000),
which establishes that bone lining cells are inclined to activate BMUs and
therefore initiate bone remodelling, except in case they receive an inhibitory
signal emitted by osteocytes and transmitted through the canalicular net-
work. This signal is defined here as

s =
ξ

ξ + c
(1 − diso)

a (2)

and depends on the mechanical stimulus, ξ ∈ [0,+∞), and the level of mi-
crostructural damage, diso ∈ [0, 1], which is a measure of the density of
microcracks and is related to the loss of stiffness (see (Mart́ınez-Reina et al.,
2009) and (Garćıa-Aznar et al., 2005)). The constant c is identified with a
reference mechanical stimulus, ξ∗, and is positive constant, like the constant
a. Thus, s ∈ [0, 1]. In normal conditions, osteocytes transmit the inhibitory
signal to the lining cells and BMUs are not activated. However, if they un-
dergo apoptosis, either by damage (d high) or disuse (ξ low), the inhibitory
signal is low, resulting in a high activation frequency. So, a sufficient number
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of BMUs will be activated in order to repair the microstructural damage or
to resorb the excess of bone, respectively. That inhibitory mechanism is not
very clear and, therefore, it makes more sense to work with an activating sig-
nal rather than with an inhibitory signal. That activating signal, s ∈ [0, 1],
has been defined as:

s = 1 − s (3)

Following Mikic and Carter (1995), the stimulus ξ is defined as the daily
strain history, based on the strain level, ε̄i, and the number of cycles, ni, of
each load case i:

ξ =

(∑
i

niε̄
m
i

)1/m

(4)

The parameter m is taken to be 4 (Whalen et al., 1988) and the effective
strain, ε̄i, is defined as a function of the strain energy density, Ui, and the
Young’s modulus, E, as follows:

ε̄i =

√
2Ui

E
(5)

The cells involved in the activity of BMUs proceed in a strict order at a
certain bone location: after the osteoclasts are recruited, they begin to resorb
the old bone tissue, progressing in two directions: radial and longitudinal (if
the osteon is approximated to a cylinder). At a given cross-section of the
osteon the resorption phase spans a time interval of length TR. Then, after
a reversal time of length TI, the formation phase begins, spanning a time
TF . This sequence was originally termed as A-R-F sequence (activation,
resorption, formation) by Frost (1964a) and lasts TR +TI +TF until the cross-
section is completely remodelled. While osteoblasts are forming new tissue
and closing the resorption cavity at a certain section, osteoclasts continue
progressing, until their apoptosis. They progress along a given direction at a
rate VBMU during σL days and always followed by the osteoblasts, which so
refill the resorption cavity.

The volume of tissue resorbed and formed at time t per unit time and
unit volume is given, respectively, by equations (6a) and (6b):

v̇R(t) =

∫ t

0

(1 − p) ṄBMU(t′)AR(t”)VBMU fc dt′ (6a)

v̇F (t) =

∫ t

0

ṄBMU(t′)AF (t”)VBMU fb dt
′ (6b)
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where t” = t− t′ is the time elapsed since the activation of the BMU. fc and
fb are two parameters measuring the activity of osteoclasts and osteoblasts,
respectively. It is assumed that fc = 1 and, thus, the amount of tissue being
resorbed is only controlled in this model by the number of active BMUs,
through equation (1). This is not actually true since the resorption area
of a BMU may vary, likely under the influence of mechanical loading (van
Oers et al., 2008b) and thus fc could differ from 1, but, the variation of the
number of active BMUs has the same effect and is controlled by mechanical
loading as well. fb is defined as a function of the mechanical stimulus: greater
than 1 in overload and lower than 1 in disuse (see (Mart́ınez-Reina et al.,
2009) for further details). It is then assumed that more osteoblasts will be
differentiated with an increasing stimulus (Martin et al., 1998). The factor
(1− p) is introduced in (6a) to account for the fact that BMUs are resorbing
a porous tissue, with porosity p. Finally, AR and AF are two variables having
dimensions of area. They are introduced to measure the amount of tissue
being resorbed and formed at a certain stage of the resorption and formation
processes, respectively. In the old model AR and AF were constants and
simply equal to the cross-sectional area of the tunnel resorbed by the BMU
and the ring-like cylinder formed afterwards, respectively. The integrands in
(6) give the contribution of those BMUs activated between time t′ and time
t′ + dt′, contribution which is integrated over the recent history, thus taking
into account only those BMUs which are still active. This is automatically
done in (6) since AR(t”) and AF (t”) are identically zero for t” over a certain
value. More precisely, they become zero when the BMU finishes its activity,
as will be explained later on.

Any difference between the volumes of tissue resorbed and formed causes
a change in bone porosity. Apart from this, the activity of BMUs influences
on other bone properties in several ways. For example, if that porosity is
oriented, as it uses to be in cortical bone, remodelling can also modify bone
anisotropy. The mineral content is also changed. More precisely, it decreases
with the activity of BMUs, as they resorb old, mineralized bone, and form
osteoid, which is initially not mineralized. Microstructural damage is reduced
by bone remodelling as well, since the old tissue is probably damaged and the
replacing tissue is initially intact. All these effects influence on the stiffness
of the tissue and are accounted in the remodelling model, whose algorithm
is schematically shown in figure 1. For a detailed explanation of these effects
see (Mart́ınez-Reina et al., 2009).

The activation of BMUs in the old model involves some simplifications
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which are still present in the new models (both strain-based model and strain
and damage-based model) and are commented next:

a) Any point of cortical bone is a potential site for activation of BMUs,
provided that it is placed on the bone matrix surface, mainly, vascular canals.
However, in the finite element implementation of this model it was assumed
that BMUs can be activated only at discrete points, the Gauss points of the
mesh (Garćıa-Aznar et al., 2005) and regardless of being on the bone ma-
trix surface or not. This last requirement had to be partially relaxed, since
the actual bone matrix/pores interface is not modelled. Instead, porosity
is homogenized and treated in the continuum mechanics sense. Then, the
BMUs are activated at the Gauss points, though the model cannot distin-
guish whether those Gauss points are on the matrix/pore interface or not.
Nevertheless, the amount of bone matrix surface is important in the activa-
tion and is accounted for through the bone specific surface, Sv, in equation
(1), which is just a function of porosity.

b) The BMU activation frequency is considered here as a continuous func-
tion of time and space. In this model, fractions of BMUs are continuously
being activated every day in every Gauss point of the FE mesh. This way,
if a fraction of BMUs is activated at a certain Gauss point in a certain day,
another fraction can be activated the next day at the same Gauss point or in
an adjacent one. This seems not realistic, since further activation of BMUs
must be prevented in a certain volume of bone if a BMU is already progress-
ing nearby. In such a case, it is more likely that osteoclasts were recruited to
the already active BMU instead of forming a new one. A more realistic ap-
proach would have been to consider the BMU activation frequency a binary
function of time and space: 0 (no BMU is activated at a certain time and
position), 1 (one BMU is activated in that point at that instant). In such
case, no more BMUs should be activated in the vicinity of that Gauss point
until a certain time has passed. In this model the fractional approach was
chosen for simplicity.

These simplifications are justified since this is not a microscopical model
and thus the activation, movement and remodelling effect of BMUs make
sense only if averaged in a certain reference volume element (RVE), on the
assumptions of continuum mechanics.

2.2. The new models. Changes introduced in the old model

The new models are anisotropic like the old model. This means that
the porosity and damage are treated as tensorial variables (see (Mart́ınez-
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Reina et al., 2009) for further details). The first novelty introduced in the
new models (both strain-based model and strain and damage-based model is
considering the diffusion of BMUs. In the old model BMUs were activated at
the Gauss points of the FE mesh, as said before, and were restricted to stay
within the volume assigned to each Gauss point. The progression’s direction
was fictitious since the BMU could not actually move. This direction just
controlled the orientation the osteon would have if it could move, which in
turn affected the local anisotropy of the tissue. In contrast to that simplistic
approach, the new models do consider the movement of the BMU through
the FE mesh (a trajectory can be derived) and then, the remodelling effect
of the BMU is not local to the activation site any longer.

2.2.1. Resorption and formation fronts

Different phases of the activity of the BMUs need to be defined (see figure
2). First, osteoclasts are being recruited at a certain location of bone. They
are resorbing bone radially (r direction, represented in phase 1 of figure
2) and progressing longitudinally (z direction), while other osteoclasts are
being recruited. This way, a resorption front, represented in dark grey, is
being formed during phase 1. This phase ends when the final diameter of the
tunnel, dO, is reached at the initial section. The resorption front is progressing
longitudinally until the end of phase 4, when the last recruited osteoclasts
undergo apoptosis. During phase 5 the rest of osteoclasts undergo apoptosis
until resorption ends. On the other hand, TI days after the resorption front
was fully formed, at the end of phase 2, osteoblasts begin to secrete osteoid
at the initial section. These cells deposit layers of osteoid (in light grey)
creating a formation front during phase 3. This formation front is developing
radially (until the haversian canal is fully formed at the end of phase 3) and
progressing longitudinally during phases 4 through 6, until they reach the
final section of the osteon at the end of phase 6. During phase 7 formation
is receding, while the cavity created by osteoclasts is refilled with osteoid, a
process which is finished at the end of phase 7.

Recalling equations (6), the quantities AR(t”) · VBMU and AF (t”) · VBMU

give, respectively, the volume of tissue resorbed and formed per unit time
by a single BMU. Assuming that the resorption and formation fronts have a
conical shape, those volumes are easily derived from the cones and truncated
cones represented in figure 2. AR(t”) · VBMU · dt” provides the volume of the
cone representing the resorption front, in dark grey, while AF (t”) · VBMU · dt”
gives the volume of the truncated cone representing the formation front, in
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light grey. Then, AR and AF are calculated as follows.

AR(t”) =



π d2O
4

(
t”

TR

)2

Phase 1

π d2O
4

Phases 2-4

π d2O
4

[
1 −

(
t” − σL

TR

)2
]

Phase 5

(7)

AF (t”) =



π d2O
4

(
1 − f 2

1 (t”)
)

Phase 3

π (d2O − d2H)

4
Phases 4-6

π d2O
4

(
f 2
2 (t”) − d2H

d2O

)
Phase 7

(8)

where the functions f1 and f2 are given by:

f1(t”) = 1 −
(

1 − dH

dO

)
t” − TI − TR

TF

(9a)

f2(t”) = 1 −
(

1 − dH

dO

)
t” − TI − TR − σL

TF

(9b)

with dO, the diameter of the osteon and dH the diameter of the haversian
canal. Table 1 shows the values of those parameters related with the activity
of BMUs which are used in the model.

2.2.2. Steering of BMUs

From now on, we are only referring to cortical bone, for which the model
presented in this work is aimed. Although BMUs are activated at the bone
matrix surface (Frost, 1964a; Parfitt et al., 1983), at either the haversian or
the volkmann canals, cortical BMUs tunnel their way through the existing
bone and are not confined to progress on the bone matrix surface, as BMUs
of trabecular bone are, due to the limited dimensions of trabeculi. This way,
cortical BMUs may steer within the cortical layer towards certain sites where
their activity is called for, in a targeted guidance (Martin, 2007).

As stated before, this guidance might be driven by osteocytes undergoing
apoptosis, either by disuse or by damage. Thus, damage and disuse would
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not only be responsible for activating BMUs but also for steering them to
“eat” the bone “in trouble”. This way, the activating signal, s, which is high
with a high damage level or with a low stimulus, can also be viewed as an
attracting signal. Consequently, the progression’s direction of the BMU will
depend, in this model, upon the mechanical stimulus and the microdamage
level.

Merging the ideas of Burger et al. (2003) and Martin (2007), the model
assumes that BMUs follow the direction of the prevalent local strain,1 unless
they are steered by the attracting signal toward the apoptotic osteocytes, if
that signal is intense, either by damage or disuse. So, the local progression’s
direction, e, has been defined as a combination of the local gradient of s and
the direction of the prevalent local strain, emax (maximum principal strain
in absolute value):

e = K(s)
∇s

∥∇s∥
+ (1 −K(s))

emax

∥emax∥
(10)

where K is a factor weighting the effect of the attracting signal. If this signal
is intense near the resorption front, K is close to 1 and the osteoclasts will
be steered to the source of the signal. Otherwise, if K is low, there are no
apoptotic osteocytes near the resorption front and the BMU will continue
progressing parallel to the direction of the prevalent local strain. It must be
noted that emax is an eigenvector of the strain tensor. So it is the opposite
direction (−emax). Then, a choice between them is needed for equation (10).
The chosen direction is the closest to ∇s, to be consistent with the definition
of e.

Equation (10) is the basis of the strain and damage-based model. The
function K(s) adopted in this work is exponential up to a reference point
(s0, K0) after which it continues rising linearly until (s = 1, K = 1):

K(s) =


A (eB s − 1) if s < s0

K0 +
1 −K0

1 − s0
(s− s0) if s0 ≤ s < 1

(11)

where A and B are chosen to ensure C1 continuity at s = s0. This function
is plotted in figure 3 and explained in Appendix A in more detail.

1Burger et al.(2003) established that BMUs follow the direction of the prevalent local
stress, but, Cowin and Hegedus (1976) established that, in a remodelling equilibrium state,
the strain tensor is parallel to the stress tensor.
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A slight variation of this model, named strain-based model, can be ob-
tained by setting K = 0. Therefore, this model follows the idea of the old
model in which BMUs are only guided by the prevalent strain directions, as
suggested by Burger et al. (2003). The only reason to try this strain-based
model is to be able to compare the implications of the hypothesis of Burger
et al. This comparison is based on the trajectories of the BMUs obtained
with both models (strain and damage-based model and strain-based model)
and could not be made directly with the old model since it did not consider
the actual movement of BMUs, as said before.

2.2.3. Diffusive treatment of the movement of osteonal BMUs

In this section, some remarks are given about the procedure employed
to implement the movement of BMUs and their remodelling activity in the
numerical model.

Though, in this model, BMUs are exclusively activated at the Gauss
points of the FE mesh, as stated before, they are allowed to progress through-
out the cortical shell, following the direction given by equation (10) and with
no further restrictions, apart from not exiting the cortical shell. In case
one BMU tends to exit the cortical shell, the progression’s direction is pro-
jected onto the limiting surfaces of that cortical shell in order to keep that
BMU tunnelling through cortical bone. Taking this in mind and by means
of equation (10), the trajectories of BMUs can be worked out.

The trajectory is marked by the guiding front, that is, the osteoclasts
resorbing at the tip the BMU. Other osteoclasts are resorbing bone behind
them and together they form a resorption front which follows the guiding
front. Osteoblasts, in the formation front, follow the osteoclasts with a cer-
tain delay, the reversal period, TI. The shape of the resorption and formation
fronts have been assumed conical (see figure 2). The distances from the cen-
troids of the resorption and formation fronts to the guiding front (ZR and
ZF ) are easily calculated by using simple geometry, though their expressions
are somewhat complicated:

ZR(t”) =



2

3
VBMU t” Phase 1

2

3
VBMU TR Phases 2-4

1

3
VBMU TR

2− t”−σL
TR

− (t”−σL)
2

T 2
R

1 + t”−σL
TR

 Phase 5

(12)
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ZF (t”) =



VBMUTF

3
(
1− dH

dO

) (1 + f1(t”)− 2f2
1 (t”)

1 + f1(t”)

)
+

+VBMU (TI + TR) Phase 3

VBMUTF

3
(
1− dH

dO

)
1 + dH

dO
− 2

(
dH
dO

)2
1 + dH

dO

+

+VBMU (TI + TR) Phase 4

VBMUTF

3
(
1− dH

dO

)
1 + dH

dO
− 2

(
dH
dO

)2
1 + dH

dO

−

−VBMU (t”− TI − TR − σL) Phases 5-6

f2
2 (t”) + f2(t”)

dH
dO

− 2
(
dH
dO

)2
f2(t”) +

dH
dO

×

× VBMUTF

3
(
1− dH

dO

) Phase 7

(13)

It must be noted that ZR and ZF are measured from the guiding front
through the end of phase 4. From then on, once the guiding front has reached
the end of the osteon, both distances are measured from that end of the osteon
(see figure 2).

Prior to the computation of the volumes of tissue resorbed and formed
by the BMU, ∆VR and ∆VF , an important aspect of the model must be
explained. In those two variables, the upper-case letter V is used for the
volume, which is an extensive variable. Instead, the volumes or volume
change rates designated with the lower-case letter v, like v̇R and v̇F , are
intensive variables. These two variables are volume change rates per unit
volume, since the activation frequency ṄBMU , from which they are derived,
is defined as the number of BMUs activated per unit time and unit volume.
As stated before, BMUs (or, more precisely, fractions thereof) are activated
in the Gauss points. So, the extensive variables associated to v̇R and v̇F must
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be calculated by multiplying them by the volume assigned in the FE mesh
to the Gauss points where the BMUs were activated, denoted as VG. This
way:

∆VR = v̇R ∆t VG (14a)

∆VF = v̇F ∆t VG (14b)

Formation and resorption have been assumed to occur at the centroids of
the formation and resorption cones respectively. That is, ∆VR and ∆VF are
accounted at those points. Since those centroids do not necessarily coincide
with Gauss points (where ∆VR and ∆VF are actually needed for FE calcu-
lations) both quantities must be shared out among the closest Gauss points
in the continuum mechanics sense. This has been done by distributing the
effect of a certain BMU among the Gauss points that are within a spherical
region of radius R̃ centered in the corresponding centroid of that BMU. So,
the amounts of tissue resorbed (and formed) during a time step, ∆t, at a
certain Gauss point i (j in formation) are respectively:

∆VR i = wi ∆VR (15a)

∆VF j = wj ∆VF (15b)

where ∆VR and ∆VF are calculated through equations (14). The distributions
involved in equations (15) are weighted with wi in resorption and wj in
formation. These weights are given by:

wi =
R̃− di

NGPR · R̃−
∑NGPR

i=1 di
(16a)

wj =
R̃− dj

NGPF · R̃−
∑NGPF

j=1 dj
(16b)

where NGPR (or NGPF ) are the number of Gauss points within the spheri-
cal region of radius R̃ centered in the resorption (formation) centroid and di
(dj) is the distance from the Gauss point i (j) to the resorption (formation)
centroid. These weights decrease rapidly with the distance, so that those
Gauss points far from a certain BMU are only slightly affected by its re-
sorption/formation activity. The choice of radius R̃ = 4mm has been made
based on the mesh density and the computational cost, which rises with R̃.
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For the mesh density used in this work, values of R̃ greater than that pro-
duce no significant differences. This procedure is based on meshless clouds
methods (Duarte and Oden, 1996; Aluru and Li, 2001).

Other variables which need to be evaluated at the guiding front, such as
s, ∇s and emax are weighted following the same procedure, being di, in this
case the distance from the guiding front to each Gauss point i. It must be
remarked that damage is indirectly affected by this smudged effect of BMUs,
since it is repaired by remodelling through the resorbed tissue ∆VR. If dam-
age is viewed just as a measurement of the density of microcracks, it could
be thought that using R̃ = 4mm might overestimate the damage repair-
ing range of BMUs. However, damage actually measures the degradation
of the stiffness and, in this case, that value of R̃ is justified. So, if a BMU
passes through a crack, it will reduce its length and this fact will increase
the stiffness in the vicinity of the remodelled tissue and not only locally.

2.3. FE model

The strain and damage-based model has been applied to the diaphysis of
a human femur subjected to normal walking loads. Only the diaphysis has
been studied since the strain and damage-based model is applicable only to
cortical bone.

The diaphysis was extracted from the 3D FE model of the proximal femur
used by Doblaré and Garćıa (2001). The daily activity was represented using
three load cases: one-legged stance, abduction and adduction. These are the
loads used by Doblaré and Garćıa (2001) and previously by Beaupré et al.
(1990), and were taken from studies analysing human gait (Pedersen et al.,
1997;Bergmann et al., 1993). These loads consist in the forces applied by
abductor muscles and reactions at the hip joint (see figure 4), with different
magnitudes and orientations of the forces and different number of cycles (see
(Doblaré and Garćıa, 2001) for further details).

Submodeling techniques are applied to obtain stresses and strains in the
diaphysis model. First, the proximal femur model is solved subjected to the
loads shown in figure 4. Then, the displacements obtained with the proximal
femur model at the cut boundaries are enforced in the diaphysis model. The
distribution of density and mechanical properties in the diaphysis at the
beginning of the simulation are imported from (Doblaré and Garćıa, 2001).

Damage d is initially taken equal to 0.02 and uniformly distributed through-
out the diaphysis. This value was assumed after some initial guesses, as the
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final damage obtained in the simulations presented here is around that value,
except for certain areas in the cortex, as will be seen later.

300 days of activity were simulated including the three loads mentioned
before. It has been assumed that bone is in a remodelling equilibrium situa-
tion at the beginning of the simulation and thus, a certain number of BMUs
are already progressing through cortical bone. These BMUs were assigned an
initial progression’s direction which is parallel to the direction of the preva-
lent strain, which is consistent with the assumption that damage is uniformly
distributed at the beginning of the simulation (see equation (10)).

3. Results

The trajectories of the BMUs activated at certain points of the femur
are shown in figure 5. This figure shows two cases: (a) strain and damage-
based model, K is calculated through equation (20) (left) and (b) strain-
based model, the value K = 0 is forced (right). As already stated, the latter
approach is similar to the old model, as it does not consider that BMUs
can be attracted by damage (they just follow the prevalent strain directions
instead). The BMUs shown in figure 5 were activated at day 200 (then their
apoptosis coincide with the end of the simulation, since σL = 100 days was
assumed), that is, well after the beginning of the simulation. After that day
the distribution of damage shows no significant changes and, thus, it is close
to an equilibrium situation in terms of equation (10). Figure 6 shows the
distribution of damage, d (see equation (2)) in a portion of the diaphysis
in those two cases after 300 days of simulation. If this variable is averaged
throughout the FE model, by computing:

d̃ =

∫
V

d · dV∫
V

dV
(17)

the efficiency of damage repair in both cases can be compared by means of
its temporal evolution, shown in figure 7.

The piece of the diaphysis studied here was divided into two halves: distal
and proximal. Then, 128 points were randomly chosen from each half. The
trajectories of the BMUs activated at those points at day 200 were analysed
by defining the angle α as a measure of the average orientation of the trajec-
tory with respect to the bone’s long axis. To be precise, it is defined as the
angle formed by the bone’s long axis and the segment joining the starting
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(activation) and ending points (apoptosis) of the BMU. The histogram of
figure 8 shows the distribution of this angle in both cases (the strain and
damage-based model and the strain-based model) for the BMUs activated at
the 256 selected points.

The mean value of α in the 256 points chosen ± one standard deviation
is shown in table 2 for each half and each model.

The Kolmogorov-Smirnov test was used to check the normality of the
samples. This test shows no significant deviation from normality in the
sample taken from the distal half simulated with the strain-based model (p =
.598) but a significant deviation (p < .001) in every other sample (proximal
half with strain-based model and both halves with the strain and damage-
based model). Thus, non-parametric tests were used to compare the samples.
The U-Mann-Whitney test revealed a significant difference in the orientation
of osteons between the distal and the proximal halves in both cases: strain
and damage-based model (Z = 3.85, p < .001 and medium effect size r = .24)
and strain-based model (Z = 4.60, p < .001 and medium effect size r = .29).
The Wilcoxon signed-rank test for related samples revealed that there is
no significant difference between the orientation of osteons obtained with
the strain and damage-based model and with the strain-based model for the
distal half (Z = 0.697, p = .486 and a small effect size r = .04) while there
is a difference for the proximal half, though not significant at the level .05
(Z = 1.658, p = .097 and a small effect size r = .10).

4. Discussion

Figure 5 shows the effect of the strain and damage-based model, against a
variation of it, the strain-based model, similar to the old model. The trajecto-
ries of BMUs are basically the same except for the area with a high damage
level (see figure 6), where there is a noticeable difference. In figure 5a, using
the strain and damage-based model, K is defined by equation (20) and thus
depends on the signal level, and consequently on the damage level (recall
equation (2)). In this case, BMUs are attracted and guided by damage and
then, those BMUs progressing near the area with a high damage level, are
steered to the periosteum where the damage is higher, repairing the damage
in their way. In figure 5b, using the strain-based model, K is forced to be
null and BMUs are not attracted by damage and just follow the direction of
the prevalent local stress directions as hypothesized by Burger et al. (2003).
The effect of this is that BMUs repair damage more efficiently using the
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strain and damage-based model as can be seen in figure 6 and as suggested
by Martin (2007).

Another undesired effect of the hypothesis of BMUs following just the
prevalent strain directions (done in the strain-based model and the old model)
can be seen in figure 6 (right), more precisely in the BMUs progressing near
the area with a high damage level. Damage affects the stiffness tensor of
the material (orthotropic in this model) and this affects the principal strain
directions. The result of a damage distribution like that is an irregular ori-
entation of the prevalent strain direction, which makes those BMUs to be
somewhat disoriented, progressing in directions which have no clear purpose.
It must be said, though, that this drawback derives from a numerical problem
and it is not directly attributable to the hypothesis of Burger et al. (2003),
but to the difficulty of implementing such hypothesis in a FE analysis.

In the areas of the femur where the damage level is moderate to low,
no differences can be seen in the trajectories of the BMUs. The statistical
analysis confirmed this conclusion. In the distal half of the FE model, no
significant difference between the orientation of the osteons obtained with
each model was found, while in the proximal half (containing the area of high
damage) there is a difference, though not significant. This different behaviour
of the proximal and distal halves of the model was also statistically confirmed.
Significant differences were found for both models. In the case of the strain
and damage-based model this difference arises from the deviation of osteons
to the damaged area in the proximal half, while using the strain-based model
that deviation is due to the undesired effect of those “disoriented” BMUs,
mentioned right above.

The inclination of osteons obtained in the simulations varies between 10◦

and 30◦, being the range 10 ÷ 20◦ the most numerous. This result agrees
with other results found in the literature. Heřt et al. (1994) measured
the inclinations of osteons in human femora, obtaining the range 5 ÷ 15◦.
That difference may arise from the fact that these authors measured that
inclination of osteons in plane sections cut in the femur. This way, they
could only appreciate the plane section of the haversian canal and the angle
measured is that of the projection of the osteon on the plane section, which
is smaller than the actual one. To illustrate this, let us consider a bone with
the long axis in the Z direction of a certain coordinate system (see figure
9). For an osteon with a direction v, the actual angle α must be measured
in the plane π containing Z and the osteon. If the plane section, π′, cut to
measure the inclination of the osteon did not contain the osteon, but were
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parallel to the plane XZ, for example, the angle measured for that osteon
would be α′. This angle depends on the angle β, formed by planes π and
π′. If we assume that β follows a uniform probability distribution, it can be
shown that the expected value of the measured angle α′ for an average angle
α = 20◦ would be α′ = 14.3◦. Likewise, for an actual average α = 10◦, the
measured average would be α′ = 7.1◦. Then, the range 10◦ ÷ 20◦ obtained
in this work as the most likely, is transformed into the range 7.1◦ ÷ 14.3◦,
which, very interestingly, is quite close to the range 5◦ ÷ 15◦ measured by
Heřt et al. (1994).

Figure 10 shows some of the sections provided by Heřt et al. (1994).
After staining with India-ink, the haversian canals are shown in black. A
wide scatter can be noticed in the length of the vascular canals. Many of
them are long, but some others are of medium length and some are even
very short. Such a great variation in the length of the haversian canals has
not been reported, what would suggest that many of the canals appearing
in the picture are actually plane sections of longer canals. These canals
would have been cut by a plane like π′ and not by a plane containing the
canal itself, needed to compute the actual inclination. This would manifest
two important conclusions: firstly, that the average values of inclination of
osteons provided by Heřt et al. (1994) would be underestimated. Secondly,
it would also confirm the wide scatter of osteons’ inclination, especially in
the distal part of the diaphysis (compare with table 2). This fact could be
behind the differences between the results obtained here (30.9±21.5◦ for the
distal half of the diaphysis and 20.1 ± 6.6◦ for the proximal half) and the
averages reported by Heřt et al. (1994) (8.1◦ in the lateral side and 10.3◦ in
the medial side).

Another interesting observation of Heřt et al. (1994) that can be seen in
figure 11 is the presence of a typical fan distribution of vascular canals near
the periosteum. This is in accordance with the results obtained with the
strain and damage-based model, more precisely, with the trajectories of BMUs
near the damaged area (see figure 5). These BMUs turn to the periosteum,
where the damage is higher due to the bending stresses. On the contrary,
the strain-based model does not reproduce this result for the BMUs passing
close to the periosteum. Instead, they turn in an irregular way and are finally
driven away from the periosteum, as stated before.

The damage accumulation rate has a major influence on the trajectories
predicted by the strain and damage-based model and is highly dependent on
two things: the mechanical properties of bone and the stress state the femur
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is subjected to. Validated experimental results dealing with bone fatigue
are very scarce. In fact, only a few models can be found in the literature
(one of them, the model used here) and their validity must be considered
with care. Regarding the distribution of stresses in the femur it must be
admitted that the loads used in this model, taken from the literature as well,
are only approximate. For example, not all the muscular groups, but only
the most important one, were included and besides, the boundary conditions
were very simplistic. Therefore, the results obtained in this study must be
analysed from a qualitative point of view, rather than quantitative.

Some comments about how this model counts the activated BMUs are
pertinent at this moment. Activation of BMUs is a process by which a
discrete number of BMUs can be activated within a somewhat continuous
region of bone (BMUs are only constrained to be activated on the bone free
surface, what in cortical bone means on the surface of vascular canals). It
seems plausible that the site of BMU activation should be the point with the
highest value of activating signal in a certain reference volume, whichever
that signal is. Once the preosteoclasts have gathered around this attract-
ing point to form multinucleated osteoclasts, the activation of further BMUs
might be presumably inhibited in the surrounding volume. Opposite to this
idea, this model assumes that a continuous number of BMUs can be acti-
vated in a discrete number of points throughout the bone (the Gauss points
of the finite element mesh). In addition, no matter if a fraction of BMUs
was activated a certain day, the next day, another fraction of BMUs can be
activated in the same point. This is a strong simplification of the problem,
but, simulating the real process would require the use of a discrete activation
frequency and even a microscopical model, in order to account for the effect
of a single BMU in the mechanical properties of the surrounding bone and
this is out of the scope of this work. Nevertheless, the simplification proposed
here to circumvent this difficulty can be interpreted in the following way: if
the activation of BMUs is kept high for a certain period of time in a certain
Gauss point, the fractions of BMUs activated daily will have, approximately,
the same effect than a discrete number of BMUs, provided that this effect is
averaged over time and space. So, the simplification made in this study can
be justified based on the assumptions of continuum mechanics. Therefore,
the BMUs in figure 5 and in the histogram are not really whole BMUs but
fractions thereof. So, figure 5 is actually representing the tendency of the
BMUs progressing by these areas. In any case, if a remodelling equilibrium
situation were to be modelled, in which no changes of mechanical stimulus
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and properties of the bone take place, no significant change of that tendency
of the BMUs would be encountered. Thus, the counting of BMUs done here
would be accurate enough.

The mechanical stimulus defined in this model (see equation (4)) is pro-
portional to the number of load cycles. However, it has been suggested
the existence of a threshold in the number of cycles for the saturation of
the stimulus (Adams et al., 1997). This saturation may be due to the fact
that osteocyte stimulation is much reduced after the first cycles of repetitive
loading (Srinivasan et al., 2002). The effect of such saturation on the bone
remodelling model proposed in this paper is to yet be analysed.

Finally, it must be noted that the high number of parameters and the
complexity of the bone remodelling models proposed in this paper makes the
results extremely difficult to validate quantitatively. Moreover, the value of
some parameters lacks validation and were chosen based on previous bone
remodelling models. Others, like BMU lifespan, BMU progression rate and
the length of the different phases, etc., were taken as deterministic constant
values. However, some works have suggested that bone remodelling might
be a stochastic process (Christen et al., 2013; Dunlop et al., 2009; Hartmann
et al., 2011; Weinkamer et al., 2004) instead of a deterministic one. In
addition, other works suggest that the BMU lifespan, BMU progression rate
and the length of the phases might be controlled by certain biochemical
signals (Buenzli et al., 2011; Pivonka and Komarova, 2012), which may make
those parameters variable. Neither the randomness, nor even the variation
of those parameters was considered in this work.

5. Conclusions

This paper presents an anisotropic remodelling model for cortical bone
based on the directional activity of BMUs. This model is an extension of a
previous one (Mart́ınez-Reina et al., 2009), in which several improvements
have been included in order to better account for the effect of BMUs in
the remodelling activity, specially in microdamage repairing. In this regard,
the hypothesis that BMUs follow the direction of the prevalent local stress
(Burger et al., 2003) has been revised according to the observations of Martin
(2007). This author argued that BMUs must be somehow driven by damage,
given that the efficiency of damage repairing by bone remodelling observed
in histomorphometric analyses was higher than expected. This higher effi-
ciency would be explained, according to Martin (2007), by the possibility that
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BMUs could turn along their way, attracted by certain signalling, expressed
by apoptotic osteocytes present near microcracks. This coupled steering of
BMUs by damage and prevalent strain direction has been included in the
model proposed here.

This model has been tested on a FE model of a human femur subjected
to normal walking loads. The effect of assuming that BMUs are guided
only by the prevalent strain directions or also by damage (as in the proposed
model) has been analysed. If both variables were responsible for the guidance
of BMUs, damage repairing would be more efficient and BMUs would not
follow an irregular course in high damaged areas as would be the case if
BMUs were only guided in the direction of the prevalent local strain. In
some cases, this irregular course even makes BMUs to run away from the
damaged area, what would be in contradiction with one of the main purposes
of bone remodelling: microstructural damage repairing.

The assumption of BMUs following the direction of the prevalent local
strain works reasonably well and may explain, up to a certain point, the ori-
entation of osteons, but fails to explain some specific phenomena like the high
efficiency of BMUs in damage repairing just discussed and the fan distribu-
tion of osteons near the periosteum (Heřt et al., 1994), where the amount of
microstructural damage can be high due to the bending stresses. Therefore,
it can be concluded that it is crucial to consider the effect of damage in the
steering of BMUs in a remodelling model of cortical bone.

6. Appendix A

The density of apoptotic cells can be determined by the concentration
of two molecules: Bax and Bcl-2 (Verborgt et al., 2002). Bax is one of the
principal effector molecules commonly expressed in cells undergoing apopto-
sis, including osteocytes. Bcl-2 is a pro-survival molecule having a molecular
structure similar to Bax but an opposite function. Bcl-2 counteracts the ef-
fect of Bax acting as a shield against macrophages. In the vicinity of a crack
the concentration of Bax and Bcl-2 was reported by Verborgt et al. (2002).
The variation of the net concentration, i.e., the difference between the con-
centration of Bax and Bcl-2, is normalized by dividing by its maximum value
(found at the crack tip) to obtain the variable b:

b =
[Bax] − [Bcl − 2]

([Bax] − [Bcl − 2])max

(18)
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The variation of this normalized concentration, b, with the distance from the
crack is schematized in (Martin, 2007) (see figure 12). Following this author,
this net concentration acts as a signal to attract macrophages, osteoclasts in
this particular case. Following Burger et al. (2003), we have assumed that
osteocytes placed in a region of bone with a low mechanical stimulus will
have a similar behaviour to those in the vicinity of a crack. Consequently,
the attracting signal, s, which accounts for damage and disuse (see equation
(3)), is assumed to be somewhat related to the net [Bax] - [Bcl-2] signal, and
consequently to the density of apoptotic osteocytes.

The attracting signal factor, K, was defined to vary with s in the strain
and damage-based model. K can be thought as a measure of the normalized
concentration of [Bax] - [Bcl-2], b. In a totally damaged (or completely
disused) area of bone, s = 1, by definition of the attracting signal, and,
logically, the concentration of [Bax] - [Bcl-2] should be at its maximum, b = 1.
In this situation BMUs are assumed to be steered to the damaged/disused
area regardless of the direction of the prevalent strain, that is K = 1. So,
the identification of K and b is consistent at this point (s = 1, K = b = 1).

Such identification has also been made at the point (s0, K0 = b0), which
represents a reference or average situation. These values are obtained next.

The reference situation is represented by a certain density of microcracks:
a single microcrack of average length (76µm following Martin (2007)) cen-
tered in a sphere of radius r0 (see figure 12). If cracks are the source of the
concentration of [Bax] - [Bcl-2] and there are no other cracks within that
reference volume, the distribution of b will be radial like that represented in
figure 12 and the average concentration in this volume can be calculated by
integration.

b0 =

∫
V0

b(r) dV∫
V0

dV

=
1

4

(
r1
r0

)3

(1 + 3 b1)+

+
b1

4 (r0 − r1)

(
r0 −

4r31
r20

+
3r41
r30

) (19)

where the following values of the parameters: r0 = 4mm, r1 = 1.5mm,
b1 = 0.2 are taken from (Martin, 2007), resulting in b0 = 0.08897. Now,
it can be thought, on the assumptions of continuum mechanics, that a
piece of bone with a crack density equal to that of the reference situation
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(1 crack/(4πr30/3) = 3.73 · 10−3cracks/mm3) has an average concentration
of [Bax] - [Bcl-2] equal to b0 = 0.08897 and then, through identification,
K0 = 0.08897.

On the other hand, that crack density produces a stiffness loss of ap-
proximately 20% in canine femora under bending (Pidaparti, 2000; Burr,
D.B., personal communication) and that loss of stiffness corresponds to
diso = 0.0352 (see Appendix B). Substituting this value into equation (2)
for a situation of normal load (ξ = ξ∗), the value s0 = 0.535 is obtained with
the parameters a and c = ξ∗ of table 1.

The point (s0 = 0.535, K0 = b0 = 0.08897) tries to represent a normal
situation, over which the attractive effect rises up considerably with damage
or disuse. This rise has been assumed to occur in a linear manner, up to the
point (s = 1, K = 1). Below the reference point (s0, K0 = b0), the attracting
effect is assumed to decay exponentially to (s = 0, K = 0). In this last
situation, no attracting signal exists and the concentration of [Bax] - [Bcl-2]
must be zero, that is K = b = 0. The final function K = K(s) is:

K(s) =


A (eB s − 1) if s < s0

K0 +
1 −K0

1 − s0
(s− s0) if s0 ≤ s < 1

(20)

where A and B must be chosen to ensure C1 continuity at s = s0.
7. Appendix B

The old model considers the directionality of damage and follows the The-
ory of Anisotropic Continuum Damage proposed by Cordebois and Sidoroff
(1982). There, the microstructural damage is defined as a tensorial magni-
tude. For example, a damage tensor like the following:

d =

 0 0 0
0 0 0
0 0 d

 (21)

would be produced by the accumulation of damage in an initially undamaged
material subjected to uniaxial load in z direction. The compliance tensor of
the damaged material, S, is related to that of the undamaged material, Ŝ,
by:

S = (I−D)−1 (I−D)−1 Ŝ (I−D)−1 (I−D)−1 (22)
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in order to maintain the symmetry (see (Cordebois and Sidoroff, 1982)). The
damage accumulated by the specimens tested by Pidaparti et al. (2000),
subjected to uniaxial bending, would be modelled by a damage tensor like
that of equation (21). In that case, the loss of stiffness in z direction, or,
alternatively, the remaining stiffness could be easily derived from (22):

Ez

Êz

= (1 − d)2 (23)

where Ez and Êz are, respectively, the Young’s moduli of the damaged and
undamaged material in the axial direction of the bending test. The parameter
diso in equation (2) is related to the microstructural damage present in the
piece of bone and is defined in (Mart́ınez-Reina et al., 2009) as diso = tr(d)/3,
with tr(·) designating the trace of a tensor. Then, in uniaxial damage diso =
d/3. Finally, for a loss of stiffness of 20% (or a remaining stiffness of Ez/Êz =
0.8) diso = 0.0352.
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elling model coupling microdamage growth and repair by 3D BMU activ-
ity. Biomech. Model. Mechanobiol. 4, 147-167.

25



[16] Hartmann, M.A., Dunlop, J.W.C., Bréchet, Y.J.M., Fratzl, P.,
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2009. A bone remodelling model including the directional activity of
BMUs. Biomech. Model. Mechanobiol. 8, 111-127.

[25] Mikic, B., Carter, D.R., 1995. Bone strain gage data and theoretical
models of functional adaptation. J. Biomech. 28, 465-469.

[26] Parfitt, A.M., Mathews, C.H.E., Villanueva, A.R., Kleerekoper, M.,
Frame, B., Rao, D.S., 1983. Relationships between surface, volume, and
thickness of iliac trabecular bone in aging and in osteoporosis. J. Clin.
Invest. 72, 1396-1409.

[27] Pedersen, D.R., Brand, R.A., Davy, D.T., 1997. Pelvic muscle and ac-
etabular contact forces during gait. J. Biomech. 30, 959-965.

26
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10. Captions

10.1. Captions of figures

Figure 1: Algorithm of the internal bone remodelling model based on the
BMU activity (Mart́ınez-Reina et al., 2009).

Figure 2: Phases of the activity of a BMU in cortical bone. The resorption
and formation fronts have been assumed to have a conical shape. The dark
gray volume of the resorption front, present in phases 1 to 5, is the tissue
volume resorbed during dt”. In phases 3 to 7, osteoid is formed. The volume
of osteoid formed during dt” is represented in dark, though lighter, gray. The
dashed lines in phases 1,3,4,6 and 7 represent the end of each phase.

Figure 3: Weighting function in equation (10).
Figure 4: FE model of the proximal femur (left) taken from (Doblaré and

Garćıa, 2001). Submodel of the diaphysis (right). The displacements at the
cut boundaries of the proximal femur model are enforced in the submodel to
obtain the same elastic solution.

Figure 5: Trajectories of some BMUs activated at day 200 at certain
points of the diaphysis in two cases: (a) using the strain and damage-based
model, where K is calculated following equation (20); and (b) using the
strain-based model, where K = 0 is forced. Red trajectories correspond to
BMUs running along the anterior side of the femur(A); blue, posterior (P);
green, lateral (L) and cyan, medial (M). The position of the resorption front
of each BMU is represented by a small circle.

Figure 6: Final damage distribution in two cases: (a) using the strain
and damage-based model, where K is calculated following equation (20); and
(b) using the strain-based model, where K = 0 is forced. The anterior (A),
medial (M) and posterior (P) sides of the femur are indicated.

Figure 7: Temporal evolution of d̃ (see equation (17)) in two cases: (a)
using the strain and damage-based model (blue) and (b) using the strain-based
model (red).

Figure 8: Histogram of the angle formed by the bone’s long axis and the
segment joining the starting (activation) and ending points (apoptosis) of
the BMUs in two cases: (a) if K is calculated following equation (20) (strain
and damage-based model); and (b) if K = 0 is forced (strain-based model).

Figure 9: Scheme illustrating the deviation that can be obtained in the
measurement of the inclination of the osteon in a section of bone not con-
taining the osteon.
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Figure 10: Panoramic views of the haversian canals on all the circumfer-
ence of the diaphysis of a human femur: proximal part (up) and distal part
(down). Taken from (Heřt et al., 1994).

Figure 11: Vascular canals in an oblique section through the wall of the
femur. (A) A typical fan of greater periosteal vessels; (B) a flat fine network
of vessels of the primary bone; (C) canals of the haversian or secondary bone.
Taken from Heřt et al. (1994).

Figure A.1: Variation of the normalized concentration of [Bax] - [Bcl-2]
with the distance from the crack. Adapted from (Martin, 2007).

10.2. Captions of tables

Table 1: Values assumed for those parameters of the bone remodelling
model related to the activity of BMUs. Taken from (Mart́ınez-Reina et al.,
2009) and (Garćıa-Aznar et al., 2005).

Table 2: Mean value of α ± one standard deviation of the BMUs activated
at the 256 points chosen.
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11. Figures and tables
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Parameter Nominal value
c = ξ∗ Stimulus activation parameter 0.0015

a Damage activation exponent 20

fbio Maximum activation frequency 0.05
#BMUs

mm2 day
TR Resorption period 24 days
TI Inversion period 8 days
TF Formation period 64 days

VBMU BMU progression rate 40 µm/day
σL BMU’s lifespan 100 days
dO Osteon diameter 0.152mm
dH Haversian canal’s diameter 0.029mm

Table 1:

Distal Proximal
strain and damage-based model 30.9± 21.5◦ 20.1± 6.6◦

strain-based model 29.9± 19.4◦ 18.8± 3.4◦

Table 2:
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