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SUMMARY

In the breast of adult women, glandular and fat tissues are intermingled and cannot be clearly distinguished.
This work studies if this mixture can be treated as a homogenized tissue.
A mechanical model is proposed for the mixture of tissues as a function of the fat content. Different
distributions of individual tissues and geometries have been tried to verify the validity of the mixture model.
A multiscale modelling approach was applied in a finite element model of a representative volume element
(RVE) of tissue, formed by randomly assigning fat or glandular elements to the mesh. Both types of tissues
have been assumed as isotropic, quasi-incompresible hyperelastic materials, modelled with a polynomial
strain energy function, like the homogenized model. The RVE was subjected to several load cases from
which the constants of the polynomial function of the homogenized tissue were fitted in the least squares
sense. The results confirm that the fat volume ratio is a key factor in determining the properties of the
homogenized tissue, but the spatial distribution of fat is not so important. Finally, a simplified model of a
breast was developed to check the validity of the homogenized model in a geometry similar to the actual
one. Copyright © 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Breast biomechanics is a field of great interest in the last few years. Procedures as mastectomy,
tumorectomy, breast augmentation or reduction have been investigated by many authors, some of
whom have developed computational models to study them. For instance, Pérez del Palomar et al.
[1] constructed a finite element (FE) model of the breast from CT images, and applied gravity loads
to predict the deformation in supine and standing up positions. Lapuebla-Ferri et al. [2] simulated
with a FE model the prosthesis insertion during an augmentation mammoplasty. Roose et al. [3]
also studied methods for breast augmentation. They presented a computational model capable of
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2 J. L. CALVO-GALLEGO ET AL.

simulating the postoperative shape of the breast with an accuracy up to 1 cm after a subglandular
breast implantation. Azar et al. [4] oriented their model to guide clinical breast biopsy. Rajagopal et
al. [5] studied how to generate customized FE models by fitting geometrical models to segmented
data from MR images.

Computational models of the breast must face the problem of the complex distribution of tissues
within the organ. The female breast is composed of various kinds of soft tissues, mainly fat, gland,
Cooper’s ligaments and skin. It is known that the fibroglandular tissue has a ramified distribution,
starting from the nipple [6], but is intermingled with the fat, thus, making the segmentation of both
types of tissue from CT or MR images difficult in general [7]. Moreover, the Cooper’s ligaments
are difficult to distinguish even with advanced scanning techniques [8]. Therefore, building a
computational model of the breast distinguishing all the tissues is a hard task. Another difficulty
is the fact that the volume fraction and the spatial distribution of each tissue vary much among
women [1]. Because of this, most FE models of the breast do not distinguish between the different
tissues present in the breast [1, 2, 3, 4, 5]. Instead, they model the breast as composed of only one
material (a mixture of all tissues) covered with a thin layer of skin. The question addressed here
is if that mixture of tissues is suitable to study the breast, and which are its mechanical properties
(as a function of the fat volume ratio) to reproduce the behaviour of the breast with a reasonable
accuracy.

The material model chosen for the tissues is another key factor, since it has a strong influence on
the accuracy of these computational models [9, 10]. The breast is composed entirely of soft tissues.
These materials usually have a strongly non-linear behaviour because of their internal structure and
water content. Their behaviour is usually approximated as quasi-incompressible and hyperelastic.
Depending on the importance of dynamic loads, viscoelastic effects can be added [11]. Moreover,
depending on the material, they can be considered as isotropic or anisotropic, for example, by
modelling the collagen fiber directions [12]. Some information can be found in the literature about
modelling the mechanical properties of fat and fibroglandular tissues. All the works model both
tissues as isotropic and quasi-incompresible materials. Samani et al. [13] considered them as elastic
and determined experimentally the Young’s modulus of samples of both tissues. Some time later,
Samani and Plewes [14] determined experimentally their elastic properties, but considering the
materials as hyperelastic, with a five terms polynomial strain energy function. Other studies by
Samani et al. [15, 16] and by O’Hagan and Samani [17, 18] have provided the properties of breast
tissue with tumoral inclusions. Other authors have tried to obtain the mechanical properties through
numerical methods. Usually, they acquired CT or MR images in two body positions, for example,
supine and standing up positions. Then, a FE model was constructed and the constants of the strain
energy function were determined by fitting the relative displacements between both positions. Pérez
del Palomar et al. [1] fitted the constant of a neo-hookean model for the tissue inside the breast with
this technique. This tissue was then covered with a layer of skin, modelled with a polynomial strain
energy function and with constants taken from the experimental results obtained by Gambarotta et
al.[19].

In the present work Cooper’s ligaments were not modelled. These ligaments can play an important
role in the mechanical behaviour of the breast in young women, but as women get older ligaments
become slack and its role is less important [20, 21]. This work is mainly oriented to simulate the
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behaviour of the breast in middle-aged to old women. Thus, their effect is not so important, in
general.

This study is focused on the inner tissue of the breast, which, in a first approximation, is
modelled as a homogenized mixture of fat and fibroglandular tissue. The numerical method for
homogenization of the mixture is based on the procedure proposed by Temizer and Zohdi [22].
The general objective of this paper is to propose a mechanical model for the behaviour of that
homogenized material, providing its properties as a function of the fat volume ratio (termed as f

from now on). This is intended to simplify the computational models of the breast and to eliminate
the need for segmentation of fat and fibroglandular tissue. To achieve this objective, it is important
to study how the distribution of both tissues affects the global behaviour of the breast. Thus, the
mechanical behaviour of different mixtures of fat and fibroglandular tissue has been analysed as
well as the effect of different proportions and distributions of tissues on the model parameters.

2. METHODS

In this section, all the conducted studies and simulations are explained. They have been organised
in groups of experiments, with different objectives. For a better understanding a summary table is
presented (table I).

2.1. Study A

To determine the elastic properties of the homogenized material as a function of the fat volume
ratio, a simple FE model has been built using Abaqus FEA®. The model consists in a cube with
dimensions 1x1x1 mm3 and meshed with 8000 type C3D8H elements (3D eight-noded hexaedral
hybrid elements), 20 equally sized elements per edge.

The boundary conditions applied to the model depend on the load case considered: uniaxial
tension, uniaxial compression or shear, and are explained below. In addition, displacement
symmetry boundary conditions have been imposed in all cases in the x = 0, y = 0 and z = 0 faces of
the cube (see figure 1). These symmetry conditions would be necessary in a homogeneous material
to simulate a uniaxial stress state and were applied to the heterogeneous model for consistency of
the homogenization procedure.

In tension, a uniform displacement in z direction has been applied to the z = 1 face of the cube,
with no other restrictions. Since the behaviour is assumed incompressible, the deformation gradient
tensor enforced is:

FT =


1√
λ

1√
λ

λ

 (1)

The stretch, λ, has been increased from 1 to 1.5. In compression, identical boundary conditions
were applied, but now decreasing λ from 1 to 0.7. Finally, in the pure shear load case, uniform
displacements were enforced in the y and z directions, such that the deformation gradient tensor is:
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FS =

 1
1
λ

λ

 (2)

The stretch, λ, has been increased from 1 to 1.5 in this case.
Next, material properties were assigned to each element, corresponding to fat or fibroglandular

tissue. This assignment was random, with a uniform spatial distribution, that is, with no bias
for any position within the cube, except for accomplishing a given fat proportion (in terms of
volume ratio). This random distribution was obtained by numbering the elements of the mesh and
assigning the fat properties to a series of elements obtained with the Matlab function rand. This
function generates uniformly distributed pseudorandom numbers, which pass the required statistical
tests of randomness and independence. The fat and fibroglandular tissue were assumed isotropic,
hyperelastic and quasi-incompressible materials, and were modelled with a 5 terms polynomial
strain energy function [14]:

Ψ = C10(I1 − 3) + C01(I2 − 3) + C11(I1 − 3)(I2 − 3) + C20(I1 − 3)2 + C02(I2 − 3)2 (3)

where I1 and I2 in equation (3) are the first and second invariant of the right Cauchy-Green tensor,
respectively. The constants Cij of the fat and fibroglandular tissues were taken from Samani and
Plewes [14] and are shown in table II, corresponding to the fat volume ratios f = 0 and f = 1.

Five fat volume ratios were tested: 10%, 30%, 50%, 70% and 90%. Sixteen cases with different
random spatial distributions were studied for each fat volume ratio. Figure 1 shows one of the 16
cases for each fat volume ratio.

Each case was subjected separately to the three load cases (tension, compression and pure shear)
by applying the corresponding displacement in N small increments. The evolution of Cauchy
stresses during the load (σT

zi in tension, σC
zi in compression and σS

yi and σS
zi in pure shear, for

i = 1, ..., N ) was evaluated with help of the FE solution, as usual in homogenization procedures.
The nodal reaction forces in each direction and each face of the cube were retrieved from the FE
solution. These nodal reaction forces were summed to obtain the total reaction forces, Rij , in each
direction i and each face j, and with them the components of the first Piola-Kirchhoff stress tensor,
Pij = Rij/A0, where A0 is the area of the corresponding face in the initial configuration. Then,
with the well-known relation σ = J−1PFT , the effective Cauchy stress tensor was obtained. It
is important to note that the stress states were not uniaxial in the heterogeneous models (or that
corresponding to a pure shear state in that particular case). However, the stress components that
violated the uniaxiality were negligible (two or three orders of magnitude lower than the uniaxial
stress) as it is well-known from homogenization theory.

The homogenized tissue was assumed isotropic, hyperelastic and quasi-incompressible, and
modelled with the same strain energy function as the fat and fibroglandular tissues (equation 3).

The Cauchy stresses of the homogenized tissue can be represented analytically as a function of
the constants Cij and the stretch as follows. First, the analytical Cauchy stress tensor is given by:

σ = −pI+ 2(
∂Ψ

∂I1
+ I1

∂Ψ

∂I2
)b− 2

∂Ψ

∂I2
b2 (4)
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where p can be interpreted as a Lagrange multiplier, identified with a hydrostatic pressure, I is the
unit tensor and b = FFT is the left Cauchy-Green tensor. In uniaxial tension this tensor is:

σT =

 0 0 0

0 0 0

0 0 σT
z an

 (5a)

The same applies for uniaxial compression, just substituting σC
zan for σT

zan. In pure shear, this
tensor is written in principal axes as:

σS =

 0 0 0

0 σS
y an 0

0 0 σS
z an

 (5b)

Calculating the b tensors from the deformation gradient tensors of equations (1) and (2), and
substituting b in equation (4), the following components of the Cauchy stress tensor are obtained in
each case:

σT
z an = 2C10(λ

2 − 1

λ
) + 2C01(λ− 1

λ2
) + 6C11(λ

3 − λ2 − λ+
1

λ
+

1

λ2
− 1

λ3
)+

+ 4C20(λ
4 − 3λ2 + λ+

3

λ
− 2

λ2
) + 4C02(2λ

2 − 3λ− 1

λ
+

3

λ2
− 1

λ4
)

(6a)

σS
y an = −2(−1 + λ2)

λ4

(
C11 + 2C20 + (2C02 + C10 − C11 − 4C20)λ

2+

+ (C01 − 4C02 − C11 + 2C20)λ
4 + (2C02 + C11)λ

6
) (6b)

σS
z an =

2(−1 + λ2)

λ4

(
2C02 + C11 + (C01 − 4C02 − C11 + 2C20)λ

2+

+ (2C02 + C10 − C11 − 4C20)λ
4 + (C11 + 2C20)λ

6
) (6c)

The expression for σC
z an is identical to that for σT

z an. The subscript “an” stands for analytical
solutions. A measure of the error produced in the estimation of the Cauchy stresses with this method
can be represented by the squared error, SE, of the three load cases altogether:

SE(C10, C01, C11, C20, C02) =

N∑
i=1

(σC
zi − σC

z an)
2 +

N∑
i=1

(σT
zi − σT

z an)
2+

+

N∑
i=1

(
(σS

yi − σS
y an)

2 + (σS
zi − σS

z an)
2
) (7)
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where N is the number of points used in each load case to compare the analytical and the FE
solution.

The analytical stresses in equation (7) depend on the constants Cij of the model, which can be
fitted by minimizing SE in the least squares sense. With this procedure, a set of constants was
estimated for each of the 16 random cases. Finally, the average constants of those 16 cases was
obtained for each fat volume ratio.

2.2. Study B

After estimating the constants of the homogenized material for each fat volume ratio, other material
distributions and geometries have been simulated to test the behaviour of the homogenized material.

In study B, the same procedure followed in study A has been conducted, but meshing the cube
with less elements. By reducing the number of elements, it is more likely to have larger pieces
of a single tissue. Such distribution would be closer to reality if both types of tissue were not as
intermingled as in the model of study A. Then, the aim of the study B was to analyse the influence
of these larger pieces of a single tissue in the overall behaviour of the homogenized material. Only
the case of 50% fat volume ratio has been analysed. Two models, with 1000 and 125 elements,
respectively, have been tested and compared to the original model of 8000 elements. The selection
of these element sizes (between 50 and 200 µm) is justified since a terminal duct lobular unit
(TDLU) has an approximate diameter of 200-600 µm and the little lactiferous ducts, which join
those TDLUs, have an approximate diameter of 40-60 µm [23, 24]. During breastfeeding, these
ducts increase their size, but that can be considered a marginal state of the female breast.

2.3. Study C

In study C, a simplified geometry of the tissue inside the breast, consisting in a spherical cap of
8 cm in radius and a height of 6 cm was built and meshed using 93312 type C3D8H elements.
Two models were analysed for this geometry, one distinguishing between fat and fibroglandular
tissue, named ramified model, and the other one without differentiation, i.e. using the homogenized
material properties. The ramified model is shown in figure 2 and has 45.3% of fat. To construct
this ramification, the point N1 (see figure 2) was established as the origin of a number of beams
equally spaced over the spherical cap. The glandular tissue was assigned to the elements within the
beams, whose width was arbitrarily set, such that gland and fat were approximately divided in equal
proportions†. This distribution tries to mimic, in a simplified manner, the ramified distribution of
glandular tissue in an actual breast, in which the gland is more abundant near the nipple, where
the lactiferous ducts converge. It must be clear that the intention of this study was not modelling
an actual breast, in which case the skin (not included in this model) should be added and more
complex boundaries conditions should be considered to model the interaction with the surrounding
tissues and organs. The aim of study C was to compare the behaviour of both models (homogenized
and ramified) under gravity loads, so to check the validity of the homogenization procedure when
applied in a geometry similar to the actual one.

†The 50-50% is the most compromising proportion from the homogenization point of view. This homogenization
procedure is more accurate as one constituent predominates and is exact for a 0-100% proportion, obviously.
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As boundary conditions, all the displacements were constrained in the back plane of the spherical
cap, i.e. in the contact with the chest wall, like in other studies [1, 2]. Both models were subjected
to gravity loads simulating three body positions: supine (gravity acting in the negative x direction
of figure 2), prone (gravity acting in the positive x direction) and standing up (gravity acting in
the negative z direction). The displacements of the nipple (point N1) in both models (ramified and
homogenized) were compared for each load case.

The densities considered for fibroglandular and fat tissues were 1.04 g/cm3 and 0.93 g/cm3,
respectively [25, 26, 27]. For the homogenized material, the density was calculated using the rule
of mixtures.

2.4. Study D

Finally, in study D, the same procedure followed in study C (with the same models and materials)
was conducted, but now changing the boundary conditions. In study C, all the displacements were
constrained in the back plane of the spherical cap. In study D, the displacements were constrained
in half of the back plane (in figure 2, if a line is drawn from N2 in z direction, the nodes of the
back plane which are to the left), while in the other half the nodes were connected with a certain
stiffness to a rigid wall (the same stiffness in directions x, y and z). It is known that the connection
between the breast and the chest is carried out through muscles and ligaments, and they have
some flexibility. This precise configuration of dividing the breast in two halves was selected for
it produced a deformed shape that resembled the actual one more closely than that of the study
C. To some extent, the rigid connection of the left part is mimicking the constraining effect of
the sternum. The results shown here correspond to a stiffness of those connectors of 0.05N/m,
which was adjusted to produce a displacement of the nipple similar to the actual one. Anyhow, this
study did not pursue a precise modelling of the boundary conditions of the breast, but studying the
behaviour of the bulk material of the homogenized model in a more realistic scenario.

3. RESULTS

3.1. Study A

The constants of the polynomial strain energy function were fitted for each of the 16 cases studied
per fat volume ratio, by minimizing SE given in equation (7). The mean and standard deviation for
these constants were calculated for each fat volume ratio and are shown in table II. The root-mean-
squared errors (RMSE) for the 16 cases are also shown in table II.

Linear or quadratic regressions were selectively proposed between the 5 constants and f (see
figures 3 and 4).

3.2. Study B

A comparison of the random distribution models for different number of elements: 8000, 1000 and
125; was made for f = 0.5. The constants of the polynomial model obtained are shown in table III.

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2010)
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3.3. Study C

The results of the spherical cap geometry are presented here. The displacement of the nipple (node
N1, see figure 2) in both models (ramified and homogenized) for the three body position simulated
are compared in table IV. The relative difference between those displacements is also shown in the
table.

3.4. Study D

The results of the spherical cap geometry, with more flexible boundary conditions, are presented
here. The displacement of the nipple in both models for the three body position simulated are
compared in table IV. The relative difference between those displacements is also shown in the
table.

4. DISCUSSION

The small errors found in the least squares fitting of the constants with the three load cases
applied (see table II) show that the polynomial model is suitable to reproduce the behaviour of the
homogenized tissue, provided that the individual compounds are well modelled with a polynomial
model with the constants given by Samani and Plewes [14].

The mean values of the constants vary much with the fat content, confirming that the fat volume
ratio is a key factor in determining the properties of the composite tissue. In addition, the standard
deviations are small, indicating that the distribution of fat is not so important, at least in the random
distribution. A linear regression between the constants and the fat volume ratio fits quite well, except
for C01 and C11, for which a quadratic regression fits better.

The influence of the mesh size in the homogenization procedure was analysed in study B.
The constants of the strain energy function were very similar in all cases, confirming that the
homogenization is also valid in a breast in which larger pieces of a single tissue exists.

In homogenization techniques, the application of displacement boundary conditions to obtain an
average stress provides an upper bound of the effective stiffness. Alternatively, the application of
traction boundary conditions to obtain an average displacement provides the lower bound. For this
reason, three alternative loads were applied: constant tension, compression and pure shear stress in
the corresponding faces of one model with 50% of fat proportion. The stretches, λ, were computed
in this case, resulting in negligible differences of less than 0.03%.

In the spherical cap (study C) the relative differences in displacement between both models
(ramified and homogeneous), shown in table IV, are very small, thus confirming the validity of
the homogenized model. Despite these good results, the magnitude of the displacements seems low
compared to actual displacements in a real breast [28]. This is likely due to the simplistic boundary
conditions imposed in the model (fixing the nodes in contact with the chest wall). The actual
connection of the tissues is likely more flexible and makes those displacements to be larger. That
is the reason why a second model with different boundary conditions (study D) was analysed. As
mentioned before, the intention was not modelling very precisely the actual boundary conditions of
the breast, but checking if the behaviour of the bulk homogenized tissue is still valid with boundary
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conditions that produce a deformation state closer to the actual one. And so it is, given that in study
D the displacements obtained with the homogenized model are very similar to those obtained with
the ramified model.

The usefulness of this paper is linked to the availability of assessing the fat volume ratio within
the breast in a straightforward way, at least approximately. Several techniques exist to measure that
fat volume ratio. Visual assessment through mammography images is probably the simplest one,
but it can only provide a qualitative measurement. With this technique an individual can be sorted
out into categories, e.g. 0-25%, 25-50%, 50-75%, 75-100%, [29]. The segmentation’s accuracy can
be easily increased if some mathematical algorithms are applied [30, 29]. With the use of MR
imaging and tissue segmentation the accuracy can be increased further, though paying a high price
in manipulation and computation time [31]. For some purposes, the four aforementioned categories
can be enough in view of the variation of the material constants with the fat content. Therefore, a
quick visual assessment of the fat volume ratio through mammography and the use of the proposed
homogenized model can strongly simplify the problem of patient specific breast models.

Finally, the limitations of the study are presented. The interfaces between fat and gland have been
modelled as a rigid union, i.e. the contact between both materials has not been taken into account.
Moreover, the model depends on the suitability of the properties of fat and gland given by Samani
and Plewes [14], which have been used to develop the present model. It is important to note also
that the strain energy function used by these authors is not polyconvex. However, this fact does not
necessarily mean that this function should be ruled out, as stated by Hartmann [32, 33]. In particular,
this author showed that the only requirement for polynomial models to produce monotonous stress-
strain curves (that is, with a physical meaning) is that the constants are positive, like they are in
the homogenized model for any fat content. Finally, the homogenization procedure carried out
here provides a material model which is adequate to simulate the bulk behaviour of the mixture
of gland and fat, but it would fail to describe the behaviour under very localized loads, like a needle
insertion. In that case, the size of the needle could be of the same order of magnitude as that of
the breast constituents. The structural organization of the tissues might play an important role and a
microscopic model would be needed in such case.

5. CONCLUSIONS

A mechanical model has been proposed for the mixture of the female breast tissues as a function of
the fat volume ratio. A numerical homogenization technique has been used to fit the constants of a
polynomial hyperelastic model. Different random distributions of fibroglandular and fat tissues have
been tested providing consistent results. The elastic response is highly dependent on the fat volume
ratio, but it does not depend on the particular distribution of fat and gland. This conclusion has been
confirmed in a model with a similar geometry to a real breast, where the fibroglandular tissue has
been arranged in a ramified manner. The proposed homogenized model is suitable and constitutes
a strong simplification of the problem. Certainly, it reduces the cost of modelling the breast, since
no segmentation of fat and fibroglandular tissue would be necessary anymore. Instead, apart from
the skin, not considered in this study, only the soft tissues inside the skin must be identified and
modelled as a whole and the fat volume ratio measured or estimated. This simplification is important
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from a practical point of view, given that the segmentation of fat and gland is a hard task due to the
similarity of both types of tissue in terms of appearance in the CT scan. Moreover, the FE model
itself is simpler, due to the fact that there is only one material, and not two intermingled, with the
numerical benefits that it implies.
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Table I. Summary table of the conducted studies

Study Objective
Type of

computational
model

Number of cases Number of load
cases in each case Results

A

To fit a mechanical
model of the

homogenized tissue
as a function of the

fat content

Cubic model
(8000 elements)
with a uniform
spatial random
distribution of

fat and glandula

16 cases (with
different random

distributions) per fat
proportion (10, 30,
50, 70 and 90%)

3 load cases:
uniaxial tension
and compression

and shear
Total=16x5x3

Constants of the
strain energy

function used to
model the

homogenized
tissue

B

To determine the
influence of zones

with higher
concentration of one

type of tissue

Same as in
study A, but

with different
number of
elements

2 cases: one with
1000 elements and
another with 125

(50% of fat both). 16
cases (with different
random distributions)

per each one

3 load cases:
uniaxial tension
and compression

and shear
Total=16x2x3

Comparison
with the
constants

obtained in
study A

C

To determine the
behaviour of the

homogenized
material in a

simplified breast
geometry

Spherical cap
model

One model with the
homogenized tissue
and the other with a
ramified distribution

of fibroglandular
tissue

3 cases per
model,

corresponding to
prone, supine and

standing up
positions
Total=2x3

Comparison of
the

displacements
of both models

D

To determine the
behaviour of the

homogenized
material in a

simplified breast
geometry with

different boundary
conditions

Spherical cap
model

One model with the
homogenized tissue
and the other with a
ramified distribution

of fibroglandular
tissue

3 cases per
model,

corresponding to
prone, supine and

standing up
positions
Total=2x3

Comparison of
the

displacements
of both models

Table II. Mean, µ, and standard deviation, σ, obtained for each constant of the polynomial strain energy
function. The fat volume ratio is termed as f

Fat volume ratio C10 C01 C11 C20 C02 (10−4MPa) RMSE (kPa)

f = 0 3.3 2.8 44.9 77.2 94.5 (A.Samani, 2004)

f = 0.1
µ 3.2835 2.8271 42.5265 72.9896 89.2642

3 · 10−4

σ 0.0074 0.0054 0.1206 0.0632 0.0521

f = 0.3
µ 3.2453 2.8826 37.8507 64.6884 79.0541

9 · 10−4

σ 0.0089 0.0064 0.1857 0.0832 0.0911

f = 0.5
µ 3.2010 2.9331 33.3466 56.5675 69.2128

7 · 10−4

σ 0.0166 0.0138 0.2114 0.1170 0.0911

f = 0.7
µ 3.1738 2.9600 28.7921 48.8806 59.9891

8 · 10−4

σ 0.0179 0.0136 0.2476 0.1341 0.1146

f = 0.9
µ 3.1249 2.9899 24.5546 41.5000 51.2965

3 · 10−4

σ 0.0059 0.0042 0.0967 0.0475 0.0428

f = 1 3.1 3.0 22.5 38.0 47.2 (A.Samani, 2004)
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Table III. Comparison between the uniform random distribution models with 8000, 1000 and 125 elements
for f = 0.5

Number of elements C10 C01 C11 C20 C02 (10−4MPa)

8000 3.2010 2.9331 33.3466 56.5675 69.2128

1000 3.2056 2.9325 33.3109 56.4507 69.0912

125 3.2007 2.9421 33.5065 56.4038 68.9541

Table IV. Modulus of the displacements (mm) of the nipple in the spherical cap geometry and in the spherical
cap geometry with more flexible boundary conditions in both models and in the three body positions

simulated. Relative difference between those displacements

Homogenized model Ramified model Relative difference

Spherical cap

Supine 1.83 1.85 0.86%

Prone 2.02 2.04 0.83%

Standing up 5.98 6.03 0.79%

Spherical cap with
more flexible
boundary conditions

Supine 17.665 17.591 0.42%

Prone 13.491 13.463 0.2%

Standing up 7.546 7.611 0.85%

Figure 1. Cubic models with 10%, 30%, 50%, 70% and 90% of fat
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Figure 2. Ramified model

Figure 3. Correlations between C10 and C01 and fat volume ratio, f

Figure 4. Correlations between C11, C20 and C02 and fat volume ratio, f
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