13 research outputs found

    Chemical vapour deposited ZnO nanowires for detecting Ethanol and NO2

    Get PDF
    Randomly oriented ZnO nanowires were grown directly onto alumina substrates having platinum interdigitated screen-printed electrodes via the chemical vapor deposition method using Au as catalyst. Three different Au film thicknesses (i.e., 3, 6 or 12 nm) were used in the growth of nanowires, and their gas sensing properties were studied for ethanol and NO2 as reducing and oxidizing species, respectively. ZnO nanowires grown employing the 6 nm thick layers were the less defective and showed the most stable, repeatable gas sensing properties. Despite ZnO nanowires grown employing the thickest Au layers reached the highest responses under dry conditions, ZnO nanowires grown using the thinnest Au film were more resilient at detecting NO2 in the presence of ambient moisture. The gas sensing results are discussed in light of the defects and the presence of Au impurities in the ZnO nanowires, as revealed by the characterization techniques used, such as X-ray diffraction, field-emission scanning electron microscopy, X-ray photoelectron spectroscopy and photoluminescence spectroscopy. Promising results were obtained by the implementation of ZnO NWs directly grown over alumina substrates for the detection of ethanol and NO2, substantially ameliorating our previously reported results

    Influence of colloidal Au on the growth of ZnO nanostructures

    Get PDF
    Vapor-liquid-solid processes allow growing high-quality nanowires from a catalyst. An alternative to the conventional use of catalyst thin films, colloidal nanoparticles offer advantages not only in terms of cost, but also in terms of controlling the location, size, density, and morphology of the grown nanowires. In this work, we report on the influence of different parameters of a colloidal Au nanoparticle suspension on the catalyst-assisted growth of ZnO nanostructures by a vapor-transport method. Modifying colloid parameters such as solvent and concentration, and growth parameters such as temperature, pressure, and Ar gas flow, ZnO nanowires, nanosheets, nanotubes and branched-nanowires can be grown over silica on silicon and alumina substrates. High-resolution transmission electron microscopy reveals the high-crystal quality of the ZnO nanostructures obtained. The photoluminescence results show a predominant emission in the ultraviolet range corresponding to the exciton peak, and a very broad emission band in the visible range related to different defect recombination processes. The growth parameters and mechanisms that control the shape of the ZnO nanostructures are here analyzed and discussed. The ZnO-branched nanowires were grown spontaneously through catalyst migration. Furthermore, the substrate is shown to play a significant role in determining the diameters of the ZnO nanowires by affecting the surface mobility of the metal nanoparticles

    Role of aluminum and HMTA in the hydrothermal synthesis of two-dimensional n-doped ZnO nanosheets

    Get PDF
    This work reports the study of the processes behind the growth of two-dimensional (2D) n-doped ZnO nanostructures on an AlN layer. We have demonstrated that AlN undergoes a slow dissociation process due to the basic controlled environment promoted by the hexamethylenetetramine (HMTA). The Al(OH)4- ions created inhibits the growth along the c-axis, effectively promoting the fast formation of a planar geometry selectively grown on top of the AlN layer. With the use of this promoting layer and a standard hydrothermal method, a selective area growth is observed with micrometric resolution. In addition, by using several advanced characterization techniques such as, X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS/EDX), X-ray photoelectron spectroscopy (XPS) and photoluminescence (PL), we observed a resulting doping with aluminum of the ZnO nanostructures, occupying substitutional and interstitial sites, that could lead to new promising applications. These high-quality n-doped ZnO nanosheets (NSs) exhibit strong ultraviolet emission in the 385-405 nm region without broad deep level emission. The piezoelectric nature of these nanostructures has been demonstrated by using piezoresponse atomic force microscope (PFM) and with the support of a piezoelectric test device. Therefore, this low-cost and fast selective-area synthesis of 2D n-doped ZnO NSs can be applicable to other aluminum based materials and paves the way to new promising applications, such as bioelectronic applications, energy generation or self-powered sensin

    PdO and PtO doped WS2 boosts NO2 gas sensing characteristics at room temperature

    Full text link
    In this work tungsten disulphide nanostructures loaded with platinum-oxide (PtO), or palladium-oxide (PdO) were grown directly onto alumina substrates. This was achieved using a combination of aerosol-assisted chemical vapour deposition (AA-CVD) method with atmospheric pressure CVD technique. At first, tungsten oxide nanowires loaded with either PtO or PdO nanoparticles were successfully co-deposited via AA-CVD followed by sulfurization at 900 °C in the next step. The morphological, structural, and chemical characteristics were investigated using FESEM, TEM, XRD, XPS and Raman spectroscopy. The results confirm the presence of PdO and PtO in the WS2 host matrix. Gas sensing attributes of loaded and pristine WS2 sensors were investigated, at room temperature, towards different analytes (NO2, NH3, H2 etc.). Both pristine and metal-oxide loaded WS2 gas sensors show remarkable responses at room temperature towards NO2 detection. Further, the loaded sensors demonstrated stable, reproducible, ultrasensitive, and enhanced gas sensing response, with a detection limit below 25 ppb. Additionally, the effect of ambient humidity on the sensing response of both loaded and pristine sensors was investigated for NO2 gas. The response of PtO loaded sensor considerably decreased in humid environments, while the response for pristine and PdO loaded sensors increased. However, slightly heating (at 100 °C) the sensors, suppresses the influence of humidity. Finally, the long-term stability of different sensors is investigated, and the results demonstrate high stability with repeatable results after 6 weeks of gas sensing tests. This work exploits an attractive pathway to add functionality in the transition metal dichalcogenide host matrix

    Oxidative Cleavage of Cellobiose by Lytic Polysaccharide Monooxygenase (LPMO)-Inspired Copper Complexes

    Get PDF
    Correction published on October 23, 2020 https://doi.org/10.1021/acsomega.0c04910The potentially tridentate ligand bis[(1-methyl-2-benzimidazolyl)ethyl]amine (2BB) was employed to prepare copper complexes [(2BB)CuI]OTf and [(2BB)CuII(H2O)2](OTf)2 as bioinspired models of lytic polysaccharide copper-dependent monooxygenase (LPMO) enzymes. Solid-state characterization of [(2BB)CuI]OTf revealed a Cu(I) center with a T-shaped coordination environment and metric parameters in the range of those observed in reduced LPMOs. Solution characterization of [(2BB)CuII(H2O)2](OTf)2 indicates that [(2BB)CuII(H2O)2]2+ is the main species from pH 4 to 7.5; above pH 7.5, the hydroxo-bridged species [{(2BB)CuII(H2O)x}2(ÎĽ-OH)2]2+ is also present, on the basis of cyclic voltammetry and mass spectrometry. These observations imply that deprotonation of the central amine of Cu(II)-coordinated 2BB is precluded, and by extension, amine deprotonation in the histidine brace of LPMOs appears unlikely at neutral pH. The complexes [(2BB)CuI]OTf and [(2BB)CuII(H2O)2](OTf)2 act as precursors for the oxidative degradation of cellobiose as a cellulose model substrate. Spectroscopic and reactivity studies indicate that a dicopper(II) side-on peroxide complex generated from [(2BB)CuI]OTf/O2 or [(2BB)CuII(H2O)2](OTf)2/H2O2/NEt3 oxidizes cellobiose both in acetonitrile and aqueous phosphate buffer solutions, as evidenced from product analysis by high-performance liquid chromatography-mass spectrometry. The mixture of [(2BB)CuII(H2O)2](OTf)2/H2O2/NEt3 results in more extensive cellobiose degradation. Likewise, the use of both [(2BB)CuI]OTf and [(2BB)CuII(H2O)2](OTf)2 with KO2 afforded cellobiose oxidation products. In all cases, a common Cu(II) complex formulated as [(2BB)CuII(OH)(H2O)]+ was detected by mass spectrometry as the final form of the complex

    Synthesis of ZnO nanowires and impacts of their orientation and defects on gas sensing properties

    No full text
    ZnO nanowires (NWs) oriented in three different directions were synthesized via the vapor-liquid-solid technique over c-, r- and a-plane sapphire substrates. Gas sensing properties of these samples against reducing and oxidizing gases were examined. ZnO NWs grown on the c-plane substrate showed the highest response to oxidizing gases (NO2), while those grown on the a-plane substrate were more responsive to reducing one (ethanol). According to the insights gained by photoluminescence studies, the distinct responses were clearly correlated with the quantity and type of defects present in the material, and ultimately, relating the orientation of the different ZnO NWs sensors to their gas sensing characteristics, showing a possible rational strategy to tailor oxide nanomaterials for gas sensing applications

    Photoluminescence from carbon structures grown by inductively coupled plasma chemical vapor deposition

    No full text
    Carbon micro/nanostructures were grown by inductively coupled plasma chemical vapor deposition (ICP-CVD) at low pressure into a tubular reactor under pure methane and using substrates of SAE 304 stainless steel. The samples show diverse structures and properties depending on the position inside the quartz tube, due to the different temperatures and environmental conditions. In this experiment, the authors have obtained structures with different scales (micro and nano), depending on the growing temperature and the position inside the reactor. Carbon microstructures were obtained on the extreme parts of the tubular reactor at low temperatures. In contrast, carbon nanostructures appeared after the plasma resonator at temperatures higher than 700 degrees C. X-ray photoelectron spectroscopy and Fourier transform infrared spectrometry evidenced functional groups with hydrogen and oxygen atoms except for nanostructures at 750 degrees C showing vertical carbon nanowalls with more than ten crystalline layers, such as it was verified by field emission SEM, TEM, and Raman shift spectroscopy. An intense photoluminescence in the visible range was revealed from the samples excited by laser (325nm), except the nanowall samples, which exhibited a poor photoluminescence. The purpose of this work is to study the photoluminescence of carbon structures produced by ICP-CVD and to evidence the role of hydrogen and oxygen functional groups with hydrogen and oxygen atoms. The understanding of these processes provides additional criteria for designing new materials based on carbon, which is environmentally friendly, for application to luminescent devices

    Role of aluminum and HMTA in the hydrothermal synthesis of two-dimensional n-doped ZnO nanosheets

    No full text
    This work reports the study of the processes behind the growth of two-dimensional (2D) n-doped ZnO nanostructures on an AlN layer. We have demonstrated that AlN undergoes a slow dissociation process due to the basic controlled environment promoted by the hexamethylenetetramine (HMTA). The Al(OH)4- ions created inhibits the growth along the c-axis, effectively promoting the fast formation of a planar geometry selectively grown on top of the AlN layer. With the use of this promoting layer and a standard hydrothermal method, a selective area growth is observed with micrometric resolution. In addition, by using several advanced characterization techniques such as, X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS/EDX), X-ray photoelectron spectroscopy (XPS) and photoluminescence (PL), we observed a resulting doping with aluminum of the ZnO nanostructures, occupying substitutional and interstitial sites, that could lead to new promising applications. These high-quality n-doped ZnO nanosheets (NSs) exhibit strong ultraviolet emission in the 385-405 nm region without broad deep level emission. The piezoelectric nature of these nanostructures has been demonstrated by using piezoresponse atomic force microscope (PFM) and with the support of a piezoelectric test device. Therefore, this low-cost and fast selective-area synthesis of 2D n-doped ZnO NSs can be applicable to other aluminum based materials and paves the way to new promising applications, such as bioelectronic applications, energy generation or self-powered sensin

    H2 generation from aqueous ethanol over ZnO nanowires, the photo-transformation of surface species

    Full text link
    ZnO nanowires (NWs) with wurzite structure and a very high [0001] preferred orientation were grown on a ZnO thin film, from a gas-solid process, in the absence of catalyst. ZnO NWs were characterized by FESEM, XRD, HRTEM, XPS, PL and Raman spectroscopy and used as photocatalysts for the photo-transformation of ethanol(aq) in the gas phase. The existence of different defects such as oxygen vacancies was evidenced. The photocatalytic process was followed by in-situ diffuse reflectance infrared spectroscopy (DRIFTS) coupled to on-line mass spectrometry (MS) analysis. The surface species determined during the irradiation (λ = 365 nm) of ZnO NWs under ethanol/water vapor flow at room temperature are related with the hydrogen production and carbon-containing products evolved

    CCDC 1821707: Experimental Crystal Structure Determination

    No full text
    Related Article: Andrea. C. Neira, Paulina R. MartĂ­nez-Alanis, Gabriel AullĂłn, Marcos Flores-Alamo, Paulino ZerĂłn, Anna Company, Juan Chen, Johann B. Kasper, Wesley R. Browne, Ebbe Nordlander, Ivan Castillo|2019|ACS Omega|4|10729|doi:10.1021/acsomega.9b0078
    corecore