Role of aluminum and HMTA in the hydrothermal synthesis of two-dimensional n-doped ZnO nanosheets

Abstract

This work reports the study of the processes behind the growth of two-dimensional (2D) n-doped ZnO nanostructures on an AlN layer. We have demonstrated that AlN undergoes a slow dissociation process due to the basic controlled environment promoted by the hexamethylenetetramine (HMTA). The Al(OH)4- ions created inhibits the growth along the c-axis, effectively promoting the fast formation of a planar geometry selectively grown on top of the AlN layer. With the use of this promoting layer and a standard hydrothermal method, a selective area growth is observed with micrometric resolution. In addition, by using several advanced characterization techniques such as, X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS/EDX), X-ray photoelectron spectroscopy (XPS) and photoluminescence (PL), we observed a resulting doping with aluminum of the ZnO nanostructures, occupying substitutional and interstitial sites, that could lead to new promising applications. These high-quality n-doped ZnO nanosheets (NSs) exhibit strong ultraviolet emission in the 385-405 nm region without broad deep level emission. The piezoelectric nature of these nanostructures has been demonstrated by using piezoresponse atomic force microscope (PFM) and with the support of a piezoelectric test device. Therefore, this low-cost and fast selective-area synthesis of 2D n-doped ZnO NSs can be applicable to other aluminum based materials and paves the way to new promising applications, such as bioelectronic applications, energy generation or self-powered sensin

    Similar works