12 research outputs found

    Foreword

    Get PDF

    New beetles (Insecta: Coleoptera) from the Lower Cretaceous of Spain

    Get PDF
    Three beetles remains from the Lower Cretaceous lithographic limestones of Spain are described. We classified them into two new genus and three new species. One specimen named Tetraphalerus brevicapitis n.sp. was placed in the Cupedidae, and both Megacoptoclava longiurogomphia n.gen., n.sp. and Bolbonectus lithographicus n.gen., n.sp. in Coptoclavidae.Three beetles remains from the Lower Cretaceous lithographic limestones of Spain are described. We classified them into two new genus and three new species. One specimen named Tetraphalerus brevicapitis n.sp. was placed in the Cupedidae, and both Megacoptoclava longiurogomphia n.gen., n.sp. and Bolbonectus lithographicus n.gen., n.sp. in Coptoclavidae

    Wasps (Insecta: Vespida = Hymenoptera) from the Early Cretaceous of Spain

    Get PDF
    Wasps and their relatives from the Lower Cretaceous lithographic limestones of Spain have been studied. Thirty specimens representing 30 species (4 of them with undetermined placement), at least 21 genera and 11 families are recorded. We erect 1 new family - Andrenelidae-, 6 new genera and 11 new species: Meiaghilarella cretacica n.gen., n.sp. (Sepulcidae Ghilarellinae), Eosyntexis catalonicus n.sp., Cretosyntexis montsecensis n.gen., n.sp. (Anaxyelidae Syntexinae), Montsecephialtites zherikhini n.gen., n.sp. (Ephialtitidae Ephialtitinae), Karataus hispanicus n.sp. (Ephialtitidae Symphytopterinae), Manlaya ansorge i n.sp. (Gasteruptiidae Baissinae), Andrenelia pennata n.gen., n.sp. (Andrenelidae n. fam.), Cretoserphus gomezi n.gen., n.sp. (Mesoserphidae), Montsecosphex jarzembow skii n.gen., n.sp., Angarosphex penyalveri n.sp., Pompilopterus (?) noguerensis n.sp. (Sphecidae Angarosphecinae), Cretoscolia conquensis n.sp. (Scoliidae Archaeoscoliinae). The Mesozoic family Ephialtitidae is revisited based on the restudy of the type-species. We compare these Spanish Cretaceous assemblages with other ones from various parts of the world: Central and Eastern Asia, England, Australia, and Brazil. The number of genera and families identified in the Spanish fossil-sites is almost the same as in the English Purbeck and Wealden. The absence of some hymenopteran groups as Xyelidae, is consistent with the warm climate know to exist in Spain during the Early Cretaceous. We conclude that both La Cabrúa and La Pedrera assemblages - the two sites that have yielded the greatest number of species- correspond to the Lower Cretaceous “Baissin type” (sensu Rasnitsyn et al., 1998), but including some Jurassic “survivors”. La Pedrera assemblage fits equally well in the “angarosphecine subtype”, while La Cabrúa roughly corresponds to the “proctotrupid” one, although shows a comparative ly high proportion of angarosphecins. This fact may suggest: a) possibly asynchrony between these two fossilsites, b) environmental differences not reflected in the lithological record, c) different taphonomic processes and/or, d) insufficient sample size - to reflect the reality of the source populations-. La Pedrera assemblage is very similar to those from Weald Clay (England), Bon Tsagan (Mongolia) and Santana (Brazil). La Cabrúa approaches to a some extent, though not quite agrees with the Purbeck (UK), Koonwarra (Australia), and most Lower Cretaceous Asian assemblages

    Barcelona Rocks, A mobile App to learn Geology in your city.

    Get PDF
    Barcelona Rocks is an application for personal mobile devices suitable for secondary and high school students as well as the general public without a solid background in Earth Sciences

    BCN Rocks: aprendiendo geología urbana a través de una aplicación App interactiva.

    Get PDF
    Barcelona Rocks (BCN Rocks) es una aplicación (App) para dispositivos móviles personales (con versiones para Android y iOS) apta para ser utilizada por estudiantes de Enseñanza Secundaria Obligatoria (ESO) y Bachillerato, y para el público en general, con el objetivo de aprender geología a partir de recursos didácticos proporcionados por las rocas de las fachadas y pavimentos de dos zonas emblemáticas y céntricas de la ciudad de Barcelona como son el Passeig de Gràcia y el Barri Gòtic. La aplicación presenta tres grandes apartados "ELEMENTOS", "EXPLORA" y "LABORATORIO" que pretenden satisfacer diversas facetas del usuario. En el apartado Elementos, el usuario encontrará el conjunto de edificios que contiene la aplicación, toda la información sobre las rocas que los forman, así como una breve explicación sobre la historia y arquitectura de cada uno de ellos. Con el apartado Explora, se pretende despertar la curiosidad o la parte más expedicionaria del usuario. Para ello se proponen una serie de rutas que pueden realizarse siguiendo, bien el criterio de posición geográfica de los edificios incluidos en la App, bien teniendo en cuenta la antigüedad de las construcciones (desde la Barcino romana hasta la Barcelona actual). Finalmente, el partado Laboratorio, permite al usuario investigar distintos aspectos geológicos mediante experimentos interactivos

    Dinosaur bonebed amber from an original swamp forest soil

    Get PDF
    Dinosaur bonebeds with amber content, yet scarce, offer a superior wealth and quality of data on ancient terrestrial ecosystems. However, the preserved palaeodiversity and/or taphonomic characteristics of these exceptional localities had hitherto limited their palaeobiological potential. Here, we describe the amber from the Lower Cretaceous dinosaur bonebed of Ariño (Teruel, Spain) using a multidisciplinary approach. Amber is found in both a root layer with amber strictly in situ and a litter layer mainly composed of aerial pieces unusually rich in bioinclusions, encompassing 11 insect orders, arachnids, and a few plant and vertebrate remains, including a feather. Additional palaeontological data¿charophytes, palynomorphs, ostracods¿ are provided. Ariño arguably represents the most prolific and palaeobiologically diverse locality in which fossiliferous amber and a dinosaur bonebed have been found in association, and the only one known where the vast majority of the palaeontological assemblage suffered no or low-grade pre-burial transport. This has unlocked unprecedentedly complete and reliable palaeoecological data out of two complementary windows of preservation¿the bonebed and the amber¿from the same site

    A new fossil inchworm moth discovered in Miocene Dominican amber (Lepidoptera: Geometridae)

    Full text link
    We report a fossil geometrid moth, a male, virtually complete, preserved in a clear piece of Miocene Dominican amber dating from 19 to 16 Mya. Fore- and hindwings appear partially overlapped, and all body characters are visible externally in dorsal and ventral views, including the outer surface of the valvae of the genitalia. The scale pattern on the wing membrane is preserved, whereas the wing color pattern is not. It belongs to the genus Dolichoneura (Geometridae: Desmobathrinae) and is named Dolichoneura jorelisae Sarto i Monteys, Hausmann, Baixeras and Peñalver sp. n., based on wing features. Because of the poor fossil record of lepidopterans, both in amber and compression rocks, the description of the available well-preserved specimens is of considerable interest for phylogenetic studies. Furthermore, it could also serve for calibrating molecular clocks and for paleobiogeographic inferences

    Physico-chemical analysis of Albian (Lower Cretaceous) amber from San Just (Spain): implications for palaeoenvironmental and palaeoecological studies.

    No full text
    Amber from a Lower Cretaceous outcrop at San Just, located in the Eastern Iberian Peninsula (Escucha Formation, Maestrat Basin), was investigated to evaluate its physico-chemical properties. Thermogravimetric (TG) and Differential Thermogravimetric (DTG) analyses, infra-red spectroscopy, elemental and C-isotope analyses were performed. Physico-chemical differences between the internal light nuclei and the peripheral darker portions of San Just amber can be attributed to processes of diagenetic alteration that preferentially took place in the external amber border colonized by microorganisms (fungi or bacteria) when the resin was still liquid or slightly polymerized. δ13Camber values of different pieces of the same sample, from the nucleus to the external part, are remarkably homogeneous, as are δ13Camber values of the darker peripheral portions and lighter inner parts of the same samples. Hence, neither invasive microorganisms, nor diagenetic alteration, changed the bulk isotopic composition of the amber. δ13C values of different amber samples range from -21.1 to -24 , as expected for C3 plant-derived material. C-isotope analysis, coupled to palaeobotanical, TG and DTG data and infra-red spectra, suggests that San Just amber was exuded by only one conifer species, belonging to either the Cheirolepidiaceae or Aracauriaceae, coniferous families probably living under stable palaeoenvironmental and palaeoecological conditions

    Unusual concentration of Early Albian arthropod-bearing amber in the Basque-Cantabrian Basin (El Soplao, Cantabria, Spain): Palaeoenvironmental and paleobiological implications.

    No full text
    The El Soplao site is a recently-discovered Early Albian locality of the Basque-Cantabrian Basin (northern Spain) that has yielded a number of amber pieces with abundant bioinclusions. The amber-bearing deposit occurs in a non-marine to transitional marine siliciclastic unit (Las Peñosas Formation) that is interleaved within a regressive-transgressive, carbonate-dominated Lower Aptian-Upper Albian marine sequence. The Las Peñosas Formation corresponds to the regressive stage of this sequence and in its turn it splits into two smaller regressive-transgressive cycles. The coal and amber-bearing deposits occur in deltaic-estuarine environments developed during the maximum regressive episodes of these smaller regressive-transgressive cycles. The El Soplao amber shows Fourier Transform Infrared Spectroscopy spectra similar to other Spanish Cretaceous ambers and it is characterized by the profusion of sub-aerial, stalactite-like flows. Well-preserved plant cuticles assigned to the conifer genera Frenelopsis and Mirovia are abundant in the beds associated with amber. Leaves of the ginkgoalean genera Nehvizdya and Pseudotorellia also occur occasionally. Bioinclusions mainly consist of fossil insects of the orders Blattaria, Hemiptera, Thysanoptera, Raphidioptera, Neuroptera, Coleoptera, Hymenoptera and Diptera, although some spiders and spider webs have been observed as well. Some insects belong to groups scarce in the fossil record, such as a new morphotype of the wasp Archaeromma (of the family Mymarommatidae) and the biting midge Lebanoculicoides (of the monogeneric subfamily Lebanoculicoidinae). This new amber locality constitutes a very significant finding that will contribute to improving the knowledge and comprehension of the Albian non-marine paleoarthropod fauna

    Unusual concentration of Early Albian arthropod-bearing amberinthe Basque-Cantabrian Basin (El Soplao, Cantabria, Northern Spain): Paleoenvironmental and paleobiological implications.

    No full text
    The El Soplao site is a recently-discovered Early Albian locality of the Basque-Cantabrian Basin (northern Spain) that has yielded a number of amber pieces with abundant bioinclusions. The amber-bearing deposit occurs in a non-marine to transitional marine siliciclastic unit (Las Peñosas Formation) that is interleaved within a regressive-transgressive, carbonate-dominated Lower Aptian-Upper Albian marine sequence. The Las Peñosas Formation corresponds to the regressive stage of this sequence and in its turn it splits into two smaller regressive-transgressive cycles. The coal and amber-bearing deposits occur in deltaic-estuarine environments developed during the maximum regressive episodes of these smaller regressive-transgressive cycles. The El Soplao amber shows Fourier Transform Infrared Spectroscopy spectra similar to other Spanish Cretaceous ambers and it is characterized by the profusion of sub-aerial, stalactite-like flows. Well-preserved plant cuticles assigned to the conifer genera Frenelopsis and Mirovia are abundant in the beds associated with amber. Leaves of the ginkgoalean genera Nehvizdya and Pseudotorellia also occur occasionally. Bioinclusions mainly consist of fossil insects of the orders Blattaria, Hemiptera, Thysanoptera, Raphidioptera, Neuroptera, Coleoptera, Hymenoptera and Diptera, although some spiders and spider webs have been observed as well. Some insects belong to groups scarce in the fossil record, such as a new morphotype of the wasp Archaeromma (of the family Mymarommatidae) and the biting midge Lebanoculicoides (of the monogeneric subfamily Lebanoculicoidinae). This new amber locality constitutes a very significant finding that will contribute to improving the knowledge and comprehension of the Albian non-marine paleoarthropod fauna
    corecore