6 research outputs found
Hondatze kognitibo arinaren detekzio goiztiarrerako hizketa ezagutza automatikoan oinarrituriko ekarpenak
302 p.Alzheimerdun gaixoengan, mintzamena ez ezik, erantzun emozionala ere kaltetu egiten da. Emozioak giza gogoaren arkitekturarekin zerikusia dituzten prozesu kognitiboak dira, eta erabakiak hartzearekin eta oroimenaren kudeaketa edota arretarekin zerikusia dute, eta aldi berean ere, horiek hertsiki lotuta dauden komunikazioarekin. Hortaz, erantzun eta kudeaketa emozionalak ere badira gaitzaren hasierako fase horietan nahasten diren beste komunikazio-elementu batzuk, eta disfluentzia bezala, emozio-erantzuna narriadura kognitiboa neurtzeko adierazlea izan daiteke.Hortaz, zenbait atazaren bidez sortutako ahots-laginen azterketak direla medio, disfluentzia eta emozio-erantzuna jaso daitezke. Hizkuntzarekiko independenteak diren parametroak bildu eta horien hizkeraren nahasmenduak ezaugarritu badaitezke, ekarpena lagungarria izan daiteke diagnostikoa egingo duten espezialistentzat.Lehengaiak ahots-laginak direnez, ingurune kliniko zein etxeko ingurunean egindako ataza desberdinen bidez grabazioak egin eta datu-baseak osatu dira, osasun-guneen irizpide etikoak kontuan hartuta eta. Datu-base horien ikerketaren bidez, galera kognitiboaren garapena neurtu, kuantifikatu, balioztatu eta sailkatu nahi da. Gaitzaren etapa desberdinak hautematen laguntzeko ekarpena egin nahi da, eta horretarako, hizkuntzarekiko independenteak diren parametroen azterketa automatikorako teknika eta metodologiak garatu dira. Mintzamen automatikoaren analisian oinarritutako multi-hurbilketa ez-lineala egin da, zeinak hizketa-analisian erabiltzen diren denborazko serieen konplexutasunaren neurtze kuantitatiboa eman diezaguke
Hondatze kognitibo arinaren detekzio goiztiarrerako hizketa ezagutza automatikoan oinarrituriko ekarpenak
302 p.Alzheimerdun gaixoengan, mintzamena ez ezik, erantzun emozionala ere kaltetu egiten da. Emozioak giza gogoaren arkitekturarekin zerikusia dituzten prozesu kognitiboak dira, eta erabakiak hartzearekin eta oroimenaren kudeaketa edota arretarekin zerikusia dute, eta aldi berean ere, horiek hertsiki lotuta dauden komunikazioarekin. Hortaz, erantzun eta kudeaketa emozionalak ere badira gaitzaren hasierako fase horietan nahasten diren beste komunikazio-elementu batzuk, eta disfluentzia bezala, emozio-erantzuna narriadura kognitiboa neurtzeko adierazlea izan daiteke.Hortaz, zenbait atazaren bidez sortutako ahots-laginen azterketak direla medio, disfluentzia eta emozio-erantzuna jaso daitezke. Hizkuntzarekiko independenteak diren parametroak bildu eta horien hizkeraren nahasmenduak ezaugarritu badaitezke, ekarpena lagungarria izan daiteke diagnostikoa egingo duten espezialistentzat.Lehengaiak ahots-laginak direnez, ingurune kliniko zein etxeko ingurunean egindako ataza desberdinen bidez grabazioak egin eta datu-baseak osatu dira, osasun-guneen irizpide etikoak kontuan hartuta eta. Datu-base horien ikerketaren bidez, galera kognitiboaren garapena neurtu, kuantifikatu, balioztatu eta sailkatu nahi da. Gaitzaren etapa desberdinak hautematen laguntzeko ekarpena egin nahi da, eta horretarako, hizkuntzarekiko independenteak diren parametroen azterketa automatikorako teknika eta metodologiak garatu dira. Mintzamen automatikoaren analisian oinarritutako multi-hurbilketa ez-lineala egin da, zeinak hizketa-analisian erabiltzen diren denborazko serieen konplexutasunaren neurtze kuantitatiboa eman diezaguke
On the Analysis of Speech and Disfluencies for Automatic Detection of Mild Cognitive Impairment
Alzheimer's disease is characterized by a progressive and irreversible cognitive deterioration. In a previous stage, the so-called Mild Cognitive Impairment or cognitive loss appears. Nevertheless, this previous stage does not seem sufficiently severe to interfere in independent abilities of daily life, so it is usually diagnosed inappropriately. Thus, its detection is a crucial challenge to be addressed by medical specialists. This paper presents a novel proposal for such early diagnosis based on automatic analysis of speech and disfluencies, and Deep Learning methodologies. The proposed tools could be useful for supporting Mild Cognitive Impairment diagnosis. The Deep Learning approach includes Convolutional Neural Networks and nonlinear multifeature modeling. Additionally, an automatic hybrid methodology is used in order to select the most relevant features by means of nonparametric Mann-Whitney U test and Support Vector Machine Attribute evaluation.This work has been supported by FEDER and MICINN, TEC2016-77,791-C4-2-R, and UPV/EHU-Basque Research Groups IT11156 and Basque Country EleKin Research Grou
Automatic Analysis of Archimedes’ Spiral for Characterization of Genetic Essential Tremor Based on Shannon’s Entropy and Fractal Dimension
Among neural disorders related to movement, essential tremor has the highest prevalence; in fact, it is twenty times more common than Parkinson's disease. The drawing of the Archimedes' spiral is the gold standard test to distinguish between both pathologies. The aim of this paper is to select non-linear biomarkers based on the analysis of digital drawings. It belongs to a larger cross study for early diagnosis of essential tremor that also includes genetic information. The proposed automatic analysis system consists in a hybrid solution: Machine Learning paradigms and automatic selection of features based on statistical tests using medical criteria. Moreover, the selected biomarkers comprise not only commonly used linear features (static and dynamic), but also other non-linear ones: Shannon entropy and Fractal Dimension. The results are hopeful, and the developed tool can easily be adapted to users; and taking into account social and economic points of view, it could be very helpful in real complex environments.This research was partially funded by the Basque Goverment, the University of the Basque Country by the IT1115-16 project-ELEKIN, Diputacion Foral de Gipuzkoa, University of Vic-Central University of Catalonia under the research grant R0947, and the Spanish Ministry of Science and Innovation TEC2016-77791-C04-R
Hondatze kognitibo arinaren detekzio goiztiarrerako hizketa ezagutza automatikoan oinarrituriko ekarpenak
302 p.Alzheimerdun gaixoengan, mintzamena ez ezik, erantzun emozionala ere kaltetu egiten da. Emozioak giza gogoaren arkitekturarekin zerikusia dituzten prozesu kognitiboak dira, eta erabakiak hartzearekin eta oroimenaren kudeaketa edota arretarekin zerikusia dute, eta aldi berean ere, horiek hertsiki lotuta dauden komunikazioarekin. Hortaz, erantzun eta kudeaketa emozionalak ere badira gaitzaren hasierako fase horietan nahasten diren beste komunikazio-elementu batzuk, eta disfluentzia bezala, emozio-erantzuna narriadura kognitiboa neurtzeko adierazlea izan daiteke.Hortaz, zenbait atazaren bidez sortutako ahots-laginen azterketak direla medio, disfluentzia eta emozio-erantzuna jaso daitezke. Hizkuntzarekiko independenteak diren parametroak bildu eta horien hizkeraren nahasmenduak ezaugarritu badaitezke, ekarpena lagungarria izan daiteke diagnostikoa egingo duten espezialistentzat.Lehengaiak ahots-laginak direnez, ingurune kliniko zein etxeko ingurunean egindako ataza desberdinen bidez grabazioak egin eta datu-baseak osatu dira, osasun-guneen irizpide etikoak kontuan hartuta eta. Datu-base horien ikerketaren bidez, galera kognitiboaren garapena neurtu, kuantifikatu, balioztatu eta sailkatu nahi da. Gaitzaren etapa desberdinak hautematen laguntzeko ekarpena egin nahi da, eta horretarako, hizkuntzarekiko independenteak diren parametroen azterketa automatikorako teknika eta metodologiak garatu dira. Mintzamen automatikoaren analisian oinarritutako multi-hurbilketa ez-lineala egin da, zeinak hizketa-analisian erabiltzen diren denborazko serieen konplexutasunaren neurtze kuantitatiboa eman diezaguke
ALZUMERIC: a decision support system for diagnosis and monitoring of cognitive impairment
ALZUMERIC: Un sistema de apoyo a la decisión para el diagnóstico y la monitorización del deterioro cognitivo. – La Internet de las cosas o de las ciudades inteligentes se está convirtiendo en una realidad. Cada vez más dispositivos están interconectados y, para hacer frente a esta nueva situación, las velocidades de procesamiento de datos se incrementan. Los dispositivos inteligentes, como las tabletas y los teléfonos, son accesibles para una gran parte de la sociedad en los países desarrollados, y las mejoras en las conexiones a Internet para el intercambio de datos hacen posible manejar grandes volúmenes de información en menos tiempo. Esta nueva realidad ha abierto la posibilidad de desarrollar arquitecturas cliente-servidor centradas en el diagnóstico clínico en tiempo real y a un coste muy bajo. Este trabajo ilustra la concepción del sistema ALZUMERIC orientado al diagnóstico de la enfermedad de Alzheimer. Es una plataforma a partir de la cual el médico especialista puede tomar muestras de voz a través de métodos no invasivos a pacientes con y sin deterioro cognitivo leve (MCI), y en la cual se parametriza la señal de entrada automáticamente para posteriormente avanzar una propuesta de diagnóstico. El MCI es un tipo de deterioro neurológico que produce una pérdida cognitiva no lo suficientemente grave como para interferir en la vida cotidiana. El presente estudio está enfocado hacia la descripción de las patologías del habla con respecto a los siguientes perfiles: fonación, articulación, calidad del habla, análisis de la respuesta emocional, percepción del lenguaje y dinámica de sistemas complejos. También se consideran aspectos relativos a la privacidad, la confidencialidad y la seguridad de la información frente a las posibles amenazas que pudiera sufrir el sistema, por lo que este primer prototipo de servicios ofrecidos por ALZUMERIC se ha dirigido a un número predeterminado de médicos especialistas. ----------ABSTRACT---------- Internet of things and smart cities are becoming a reality. Nowadays, more and more devices are interconnected and in order to deal with this new situation, data processing speeds are increasing to keep the pace. Smart devices like tablets and smartphones are accessible to a wide part of society in developed countries, and Internet connections for data exchange make it possible to handle large volumes of information in less time. This new reality has opened up the possibility of developing client-server architectures focused on clinical diagnosis in real time and at a very low cost. This paper illustrates the design and implementation of the ALZUMERIC system that is oriented to the diagnosis of Alzheimer’s disease (AD). It is a platform where the medical specialist can gather voice samples through non-invasive methods from patients with and without mild cognitive impairment (MCI), and the system automatically parameterizes the input signal to make a diagnose proposal. Although this type of impairment produces a cognitive loss, it is not severe enough to interfere with daily life. The present approach is based on the description of speech pathologies with regard to the following profiles: phonation, articulation, speech quality, analysis of the emotional response, language perception, and complex dynamics of the system. Privacy, confidentiality and information security have also been taken into consideration, as well as possible threats that the system could suffer, so this first prototype of services offered by ALZUMERIC has been targeted to a predetermined number of medical specialists