2,145 research outputs found

    Performance comparison of large-area SiPM arrays suitable for gamma ray detectors

    Full text link
    [EN] The use of photosensors of the type Silicon Photomultpliers (SiPM) has widely been extended in recent years for multiple applications in both research and industry. However, there is a lack of comparative studies of different SiPMs under the same conditions, making it difficult to choose the most appropriate one for a specific application. SiPM arrays are suitable for gamma rays detectors, especially when covering large active areas. They are used either in clinical or pre-clinical scenarios, constituting Single-Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET) scanners, or just gamma cameras. The current work presents, for the first time, a comparative study between SensL, Hamamatsu Photonics and KETEK arrays of 12 x 12 SiPMs, with individual active areas of 3 mm x 3 mm, thus covering a total active area of about 5 cm x 5 cm. In this study, we have first evaluated their bias and temperature dependencies, resulting in a very similar behaviour with just a slightly larger dependency of the tested Hamamatsu parts. We also report the performance of detector blocks based on these three SiPM arrays, when coupled to pixelated crystal arrays and monolithic scintillators, in terms of photon impact estimation accuracy, as well as energy resolution. In the case of the monolithic crystals, also the depth of interaction resolution was determined. Both monolithic and pixelated blocks are nowadays widely used in academia or are commercially available for molecular imaging systems. The results obtained for the three SiPM arrays when using those crystals, are comparable, without observing any significant different among them.This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement No 695536). It has also been supported by the Spanish Ministerio de Economia, Industria y Competitividad under Grant TEC2016-79884-C2-1-R.Gonzalez-Montoro, A.; González Martínez, AJ. (2019). Performance comparison of large-area SiPM arrays suitable for gamma ray detectors. Biomedical Physics & Engineering Express. 5(4):1-10. https://doi.org/10.1088/2057-1976/ab0f6eS11054Henseler, D., Grazioso, R., Nan Zhang, & Schmand, M. (2009). SiPM performance in PET applications: An experimental and theoretical analysis. 2009 IEEE Nuclear Science Symposium Conference Record (NSS/MIC). doi:10.1109/nssmic.2009.5402157Buzhan, P., Dolgoshein, B., Filatov, L., Ilyin, A., Kantzerov, V., Kaplin, V., … Smirnov, S. (2003). Silicon photomultiplier and its possible applications. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 504(1-3), 48-52. doi:10.1016/s0168-9002(03)00749-6Dolgoshein, B., Balagura, V., Buzhan, P., Danilov, M., Filatov, L., Garutti, E., … Tikhomirov, I. (2006). Status report on silicon photomultiplier development and its applications. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 563(2), 368-376. doi:10.1016/j.nima.2006.02.193Berard, P., Couture, M., Deschamps, P., Laforce, F., & Dautet, H. (2011). Performance measurement for a new low dark count UV-SiPM. 2011 IEEE Nuclear Science Symposium Conference Record. doi:10.1109/nssmic.2011.6154109Moliner, L., González, A. J., Soriano, A., Sánchez, F., Correcher, C., Orero, A., … Benlloch, J. M. (2012). Design and evaluation of the MAMMI dedicated breast PET. Medical Physics, 39(9), 5393-5404. doi:10.1118/1.4742850Gonzalez, A. J., Aguilar, A., Conde, P., Hernandez, L., Moliner, L., Vidal, L. F., … Benlloch, J. M. (2016). A PET Design Based on SiPM and Monolithic LYSO Crystals: Performance Evaluation. IEEE Transactions on Nuclear Science, 63(5), 2471-2477. doi:10.1109/tns.2016.2522179Gonzalez-Montoro, A., Benlloch, J. M., Gonzalez, A. J., Aguilar, A., Canizares, G., Conde, P., … Sanchez, F. (2017). Performance Study of a Large Monolithic LYSO PET Detector With Accurate Photon DOI Using Retroreflector Layers. IEEE Transactions on Radiation and Plasma Medical Sciences, 1(3), 229-237. doi:10.1109/trpms.2017.2692819González-Montoro, A., Sánchez, F., Martí, R., Hernández, L., Aguilar, A., Barberá, J., … González, A. J. (2018). Detector block performance based on a monolithic LYSO crystal using a novel signal multiplexing method. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 912, 372-377. doi:10.1016/j.nima.2017.10.098Ronzhin, A., Albrow, M., Los, S., Martens, M., Murat, P., Ramberg, E., … Ritt, S. (2013). A SiPM-based TOF-PET detector with high speed digital DRS4 readout. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 703, 109-113. doi:10.1016/j.nima.2012.11.043Kim, C., McDaniel, D., Malaney, J., McBroom, G., Peterson, W., Tran, V. H., … Ganin, A. (2012). Time-of-flight PET-MR detector development with silicon photomultiplier. 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC). doi:10.1109/nssmic.2012.6551808Schaart, D. R., van Dam, H. T., Seifert, S., Vinke, R., Dendooven, P., Löhner, H., & Beekman, F. J. (2009). A novel, SiPM-array-based, monolithic scintillator detector for PET. Physics in Medicine and Biology, 54(11), 3501-3512. doi:10.1088/0031-9155/54/11/01

    On the Use of Deep Feedforward Neural Networks for Automatic Language Identification

    Get PDF
    In this work, we present a comprehensive study on the use of deep neural networks (DNNs) for automatic language identification (LID). Motivated by the recent success of using DNNs in acoustic modeling for speech recognition, we adapt DNNs to the problem of identifying the language in a given utterance from its short-term acoustic features. We propose two different DNN- based approaches. In the first one, the DNN acts as an end-to-end LID classifier, receiving as input the speech features and providing as output the estimated probabilities of the target languages. In the second approach, the DNN is used to extract bottleneck features that are then used as inputs for a state-of-the-art i-vector system. Experiments are conducted in two different scenarios: the complete NIST Language Recognition Evaluation dataset 2009 (LRE’09) and a subset of the Voice of America (VOA) data from LRE’09, in which all languages have the same amount of training data. Results for both datasets demonstrate that the DNN-based systems significantly outperform a state-of-art i-vector system when dealing with short-duration utterances. Furthermore, the combination of the DNN-based and the classical i-vector system leads to additional performance improvements (up to 45% of relative improvement in both EER and Cavg on 3s and 10s conditions, respectively)

    Calibration of Gamma Ray Impacts in Monolithic-Based Detectors Using Voronoi Diagrams

    Full text link
    [EN] Molecular imaging systems, such as positron emission tomography (PET), use detectors providing energy and a 3-D interaction position of a gamma ray within a scintillation block. Monolithic crystals are becoming an alternative to crystal arrays in PET. However, calibration processes are required to correct for nonuniformities, mainly produced by the truncation of the scintillation light distribution at the edges. We propose a calibration method based on the Voronoi diagrams. We have used 50×50×1550 \times 50 \times 15 mm(3) LYSO blocks coupled to a 12×1212\times 12 SiPMs array. We have first studied two different interpolation algorithms: 1) weighted average method (WAM) and 2) natural neighbor (NN). We have compared them with an existing calibration based on 1-D monomials. Here, the crystal was laterally black painted and a retroreflector (RR) layer added to the entrance face. The NN exhibited the best results in terms of XY impact position, depth of Interaction, and energy, allowing us to calibrate the whole scintillation volume. Later, the NN interpolation has been tested against different crystal surface treatments, allowing always to correct edge effects. Best energy resolutions were observed when using the reflective layers (12%-14%). However, better linearity was observed with the treatments using black paint. In particular, we obtained the best overall performance when lateral black paint is combined with the RR.This work was supported in part by the European Research Council through the European Union's Horizon 2020 Research and Innovation Program under Grant 695536, and in part by the Spanish Ministerio de Economia, Industria y Competitividad under Grant TEC2016-79884-C2-1-R.Freire, M.; Gonzalez-Montoro, A.; Sánchez Martínez, F.; Benlloch Baviera, JM.; González Martínez, AJ. (2020). Calibration of Gamma Ray Impacts in Monolithic-Based Detectors Using Voronoi Diagrams. IEEE Transactions on Radiation and Plasma Medical Sciences. 4(3):350-360. https://doi.org/10.1109/TRPMS.2019.2947716S3503604

    Metabolic risk score indexes validation in overweight healthy people

    Full text link
    The constellation of adverse cardiovascular disease (CVD) and metabolic risk factors, including elevated abdominal obesity, blood pressure (BP), glucose, and triglycerides (TG) and lowered high-density lipoprotein-cholesterol (HDL-C), has been termed the metabolic syndrome (MetSyn) [1]. A number of different definitions have been developed by the World Health Organization (WHO) [2], the National Cholesterol Education Program Adult Treatment Panel III (ATP III) [3], the European Group for the Study of Insulin Resistance (EGIR) [4] and, most recently, the International Diabetes Federation (IDF) [5]. Since there is no universal definition of the Metabolic Syndrome, several authors have derived different risk scores to represent the clustering of its components [6-11]

    Effects of the ruminal comminution rate and microbial contamination of particles on accuracy of in situ estimates of ruminal degradability and intestinal digestibility of feedstuffs.

    Full text link
    Effects of considering the comminution rate -kc- and the correction of microbial contamination -using 15N techniques- of particles in the rumen on estimates of ruminally undegraded fractions and their intestinal digestibility were examined generating composite samples -from rumen-incubated residues- representative of the undegraded feed rumen outflow. The study used sunflower meal -SFM- and Italian ryegrass hay -RGH- and three rumen and duodenum cannulated wethers fed with a 40:60 RGH to concentrate diet -75 g DM/kgBW0.75-. Transit studies up to the duodenum with Yb-SFM and Eu-RGH marked samples showed higher kc values -/h- in SFM than in RGH -0.577 vs. 0.0892, p = 0.034-, whereas similar values occurred for the rumen passage rate -kp-. Estimates of ruminally undegraded and intestinal digestibility of all tested fractions decreased when kc was considered and also applying microbial correction. Thus, microbial uncorrected kp-based proportions of intestinal digested undegraded crude protein overestimated those corrected and kc-kp-based by 39% in SFM -0.146 vs. 0.105- and 761% in RGH -0.373 vs. 0.0433-. Results show that both kc and microbial contamination correction should be considered to obtain accurate in situ estimates in grasses, whereas in protein concentrates not considering kc is an important source of error

    Cyclodextrin-grafted barium titanate nanoparticles for improved dispersion and stabilization in water-based systems

    Get PDF
    Ceramic nanoparticles with piezoelectric properties, such as BaTiO3 (BT), constitute a promising approach in the fields of nanocomposite materials and biomaterials. In the latter case, to be successful in their preparation, the drawback of their fast aggregation and practically null stability in water has to be overcome. The objective of this investigation has been the surface functionalization of BaTiO3 nanoparticles with cyclodextrins (CDs) as a way to break the aggregation and improve the stability of the nanoparticles in water solution, preventing and minimizing their fast precipitation. As a secondary goal, we have achieved extra-functionality of the nanoparticles, bestowed from the hydrophobic cavity of the macrocycle, which is able to lodge guest molecules that can form inclusion complexes with the oligosaccharide. The nanoparticle functionalization has been fully tracked and characterized, and the cytotoxicity of the modified nanoparticles with fibroblasts and pre-osteoblasts cell lines has been assessed with excellent results in a wide range of concentrations. The modified nanoparticles were found to be suitable for the easy preparation of nanocomposite hydrogels, via dispersion in hydrophilic polymers of typical use in biomedical applications (PEG, Pluronics, and PEO), and further processed in the form of films via water casting, showing very good results in terms of homogeneity in the dispersion of the filler. Likewise, as examples of application and with the aim of exploring a different range of nanocomposites, rhodamine B was included in the macrocycles as a model molecule, and films prepared from a thermoplastic matrix (EVA) via high-energy ball milling have been tested by impedance spectroscopy to discuss their dielectric properties, which indicated that even small modifications in the surface of the nanoparticles generate a different kind of interaction with the polymeric matrix. The CD-modified nanoparticles are thus suitable for easy preparation of the water-based nanocomposites either as hydrogels or as nanocomposites based on thermoplastic matrices.Financial supports from AsociaciĂłn de Amigos of the University of Navarra for the PhD scholarship of R. Serra-GĂłmez as well as the Ministerio de Economia y Competitividad in the form of funding under projects. MAT2010-16815 and MAT2014-59116, are greatfully acknowledged

    Physically-sound simulation of low-velocity impact on fiber reinforced laminates

    Full text link
    A high-fidelity virtual tool for the numerical simulation of low-velocity impact damage in unidirectional composite laminates is proposed. A continuum material model for the simulation of intraply damage phenomena is implemented in a numerical scheme as a user subroutine of the commercially available Abaqus finite element package. Delaminations are simulated using of cohesive surfaces. The use of structured meshes, aligned with fiber directions allows the physically-sound simulation of matrix cracks parallel to fiber directions, and their interaction with the development of delaminations. The implementation of element erosion criteria and the application of intraply and interlaminar friction allow for the simulation of fiber splits and their entanglement, which in turn results in permanent indentation in the impacted laminate. It is shown that this simulation strategy gives sound results for impact energies bellow and above the Barely Visible Impact Damage threshold, up to laminate perforation condition

    Tourism-related placeness feature extraction from social media data using machine learning models

    Get PDF
    The study of placeness has been focus for researchers trying to understand the impact of locations on their surroundings and tourism, the loss of it by globalization and modernization and its effect on tourism, or the characterization of the activities that take place in them. Identifying places that have a high level of placeness can become very valuable when studying social trends and mobility in relation to the space in which the study takes place. Moreover, places can be enriched with dimensions such as the demographics of the individuals visiting such places and the activities the carry in them thanks to social media and modern machine learning and data mining methods. Such information can prove to be useful in fields such as urban planning or tourism as a base for analysis and decision-making or the discovery of new social hotspots or sites rich in cultural heritage. This manuscript will focus on the methodology to obtain such information, for which data from Instagram is used to feed a set of classification models that will mine demographics from the users based on graphic and textual data from their profiles, gain insight on what they were doing in each of their posts and try to classify that information into any of the categories discovered in this article. The goal of this methodology is to obtain, from social media data, characteristics of visitors to locations as a discovery tool for the tourism industry.Agencia Estatal de InvestigaciĂłn | Ref. PID2020-116040RB-I0

    National Strategy for River Restoration in Spain: A multidisciplinary approach.

    Get PDF
    A National Strategy for River Restoration is being implemented by the Spanish Ministry of Environmental Affairs, with the scientific assistance of the Universidad Politécnica of Madrid. Theoretical concepts from Fluvial Geomorphology and Ecology, together with Water Framework Directive principles and objectives, have been the basis for this Strategy, whose the main objective is to improve the ecological status of rivers, recovering their natural variability and dynamics

    PVDF/BaTiO3/carbon nanotubes ternary nanocomposites prepared by ball milling: Piezo and dielectric responses

    Get PDF
    Nanocomposites based on poly(vinylidene fluoride) (PVDF) filled with barium titanate, BaTiO3, (BT) particles, and multiwalled carbon nanotubes (MWCNTs) were prepared by high-energy ball milling (HEBM) and subsequent hot pressing. This method of materials preparation allowed obtaining uniform dispersions of the nanofillers. The influence of the particles on the polymer structure and morphology was studied. To understand the origin of changes in the PVDF properties, thermal and electrical behaviors of the PVDF/BT/MWCNT nanocomposites were studied as a function of composition. The addition of BT, MWCNT, or its mixture had not any influence on the PVDF polymorphism. However, calorimetric results pointed out that the presence of the nanofillers exerted nucleation mainly ascribed to the surface to volume ratio of the nanoparticles. The capacitance of the composites increased as the nanofiller content increased, being the effect mainly dependent on the surface to volume ratio of the nanoparticles. The dielectric behavior of the materials as a function of frequency was modeled by a Debye equivalent circuit only below the percolation threshold respect to the amount of MWCNT. The piezoelectric behavior of the ternary nanocomposites was highly affected by the incorporation of the nanofillers only when high dielectric losses occurred above the percolation threshold.The authors gratefully acknowledge the financial support from the Ministerio de Ciencia e Innovacion (MAT2010-16815) and the Ministerio de Asuntos Exteriores y de Cooperacion and the Agencia Espanola de Cooperacion Internacional para el Desarrollo for supporting the Ph.D. thesis of F.A.S
    • …
    corecore