100 research outputs found
Searching for the Transcriptomic Signature of Immune Tolerance Induction—Biomarkers of Safety and Functionality for Tolerogenic Dendritic Cells and Regulatory Macrophages
The last years have witnessed a breakthrough in the development of cell-based tolerance-inducing cell therapies for the treatment of autoimmune diseases and solid-organ transplantation. Indeed, the use of tolerogenic dendritic cells (tolDC) and regulatory macrophages (Mreg) is currently being tested in Phase I and Phase II clinical trials worldwide, with the aim of finding an effective therapy able to abrogate the inflammatory processes causing these pathologies without compromising the protective immunity of the patients. However, there exists a wide variety of different protocols to generate human tolDC and Mreg and, consequently, the characteristics of each product are heterogeneous. For this reason, the identification of biomarkers able to define their functionality (tolerogenicity) is of great relevance, on the one hand, to guarantee the safety of tolDC and Mreg before administration and, on the other hand, to compare the results between different cell products and laboratories. In this article, we perform an exhaustive review of protocols generating human tolDC and Mreg in the literature, aiming to elucidate if there are any common transcriptomic signature or potential biomarkers of tolerogenicity among the different approaches. However, and although several effectors seem to be induced in common in some of the most reported protocols to generate both tolDC or Mreg, the transcriptomic profile of these cellular products strongly varies depending on the approach used to generate them
Ethyl Pyruvate Induces Tolerogenic Dendritic Cells
Dendritic cells (DC) are professional antigen presenting cells that have a key role in shaping the immune response. Tolerogenic DC (tolDC) have immuno-regulatory properties and they are a promising prospective therapy for multiple sclerosis and other autoimmune diseases. Ethyl pyruvate (EP) is a redox analog of dimethyl fumarate (Tecfidera), a drug for multiple sclerosis treatment. We have recently shown that EP ameliorates experimental autoimmune encephalomyelitis, a multiple sclerosis murine model. Here, we expanded our study to its tolerogenic effects on DC. Phenotypic analysis has shown that DC obtained from mice or humans reduce expression of molecules required for T cell activation such as CD86, CD83, and HLA-DR under the influence of EP, while CD11c expression and viability of DC are not affected. Furthermore, EP-treated DC restrain proliferation and modulate cytokine production of allogeneic lymphocytes. These results demonstrate that EP has the ability to direct DC toward tolDC
Increased Natural Killer Cells Are Associated with Alcohol Liver Fibrosis and with T Cell and Cytotoxic Subpopulations Change
Natural killer (NK) cells play a therapeutic role in liver fibrosis (LF). We aimed to analyze NK cells in heavy drinkers without cirrhosis or decompensated liver disease and establish correlations with other related subpopulations. Data on sociodemographic characteristics, alcohol consumption, laboratory parameters, and immunophenotyping of NK (CD16 + /CD56 +), T (CD3 +), B (CD19 +), NKT (CD16 + /CD56 + /CD3 +), and cytotoxic (CD3 - CD8 +) cells were collected. Fibrosis-4 (FIB-4) scores were used to compare patients without (FIB-4 3.25) advanced LF (ALF). We included 136 patients (76% male) with a mean age of 49 years who had a 15-year alcohol use disorder (AUD) and alcohol consumption of 164 g/day. Patients with ALF (n = 25) presented significantly lower absolute total lymphocyte, T cell, B cell, and NKT cell numbers than patients without LF (n = 50; p < 0.01). However, the NK cells count was similar (208 ± 109 cells/µL vs. 170 ± 105 cells/µL) in both groups. The T cells percentage was lower (80.3 ± 5.6% vs. 77 ± 7%; p = 0.03) and the NK cells percentage was higher (9.7 ± 5% vs. 13 ± 6%; p = 0.02) in patients with ALF than in those without LF. The percentages of NK cells and T cells were inversely correlated in patients without (r = -0.65, p < 0.01) and with ALF (r = −0.64; p < 0.01). Additionally, the NK cells and CD3 - CD8 + cell percentages were positively correlated in patients without (r = 0.87, p < 0.01) and with (r = 0.92; p < 0.01) ALF. Conclusions: Heavy drinkers without decompensated liver disease showed an increase in NK cells related to T cells lymphopenia and an increase in cytotoxic populations. The interaction of NK cells with other subpopulations may modify alcohol-related liver disease progression
Regulatory role of vitamin D in T-cell reactivity against myelin peptides in relapsing-remitting multiple sclerosis patients
Background: Low levels of plasma 25-hydroxyvitaminD (25(OH)D) are associated with a higher incidence of multiple sclerosis (MS) due to the immune suppressive properties of vitamin D. The aim of this study was to determine the correlation between plasma 25(OH)D concentrations and clinical and immunological variables in a cohort of multiple sclerosis patients. Methods: Plasma 25(OH)D concentrations were evaluated in summer and winter in 15 primary progressive MS (PPMS) patients, 40 relapsing- remitting MS (RRMS) patients and 40 controls (HC). Protocol variables included demographic and clinical data, radiological findings and immunological variables (oligoclonal bands, HLADR15 and T-lymphocyte proliferation to a definite mix of 7 myelin peptides). Results: During the winter, plasma concentrations were significantly lower in RRMS patients compared to HC, whereas no differences were found in summer. No relationships were found between plasma 25(OH)D concentrations and clinical or radiological variables. RRMS patients with a positive T-cell proliferation to a mix of myelin peptides (n = 31) had lower 25(OH)D concentrations. Conclusions: 25(OH)D is an immunomodulatory molecule that might have a regulatory role in T-cell proliferation to myelin peptides in RRMS patients
CD4-CD8 and CD28 expression in T cells infiltrating the vitreous fluid in patients with proliferative diabetic retinopathy : a flow cytometric analysis
OBJECTIVES: To investigate CD4-CD8 and CD28 expression in T cells infiltrating the vitreous fluid in patients with proliferative diabetic retinopathy and to evaluate the relationship between the infiltrating T cells and both the activity of proliferative diabetic retinopathy and the clinical outcome. METHODS: Both vitreous and peripheral blood samples were obtained simultaneously from 20 consecutive diabetic patients and analyzed by flow cytometry. Three diabetic patients were excluded because there were no viable cells in the vitreous fluid. Six nondiabetic patients requiring vitrectomy were also studied. RESULTS:T lymphocytes were detected in all 6 diabetic patients with vitreous hemorrhage and in 6 (55%) of the 11 diabetic patients without vitreous hemorrhage, but in none of the nondiabetic patients. The percentages of T cells (CD3+), TCD4+ (CD3+ CD4+), and TCD8+ (CD3+ CD8+) subsets, as well as the expression of CD28, were similar in the vitreous fluid and in the peripheral blood in patients with vitreous hemorrhage. However, in patients without vitreous hemorrhage, the percentage of CD4+ CD28-T cells in the vitreous fluid was significantly higher than in the peripheral blood (33.34% [20.75%-100.00%] vs 8.45% [2.43%-56.59%]; P =.02). In addition, all of these patients showed quiescent retinopathy and their outcome was better than that of patients with vitreous hemorrhage and patients in whom intravitreous T cells were undetectable. CONCLUSION: T cells infiltrating the vitreous of diabetic patients without vitreous hemorrhage not only show a different pattern than in the peripheral blood but also seem to improve the prognosis of proliferative diabetic retinopathy. CLINICAL RELEVANCE: Our results provide further understanding of events involved in the autoimmune response in diabetic retinopathy and may aid in the research for new treatment approaches
MAP7 and MUCL1 are biomarkers of Vitamin D3-induced tolerogenic dendritic cells in multiple sclerosis patients
The administration of autologous tolerogenic dendritic cells (tolDC) has become a promising alternative for the treatment of autoimmune diseases, such as multiple sclerosis (MS). Specifically, the use of vitamin D3 for the generation of tolDC (vitD3-tolDC) constitutes one of the most widely studied approaches, as it has evidenced significant immune regulatory properties, both in vitro and in vivo. In this article, we generated human vitD3-tolDC from monocytes from healthy donors and MS patients, characterized in both cases by a semi-mature phenotype, secretion of IL-10 and inhibition of allogeneic lymphocyte proliferation. Additionally, we studied their transcriptomic profile and selected a number of differentially expressed genes compared to control mature and immature dendritic cells for their analysis. Among them, qPCR results validated CYP24A1, MAP7 and MUCL1 genes as biomarkers of vitD3-tolDC in both healthy donors and MS patients. Furthermore, we constructed a network of protein interactions based on the literature, which manifested that MAP7 and MUCL1 genes are both closely connected between them and involved in immune-related functions. In conclusion, this study evidences that MAP7 and MUCL1 constitute robust and potentially functional biomarkers of the generation of vitD3-tolDC, opening the window for their use as quality controls in clinical trials for MS
Comparative transcriptomic profile of tolerogenic dendritic cells differentiated with vitamin D3, dexamethasone and rapamycin
Tolerogenic dendritic cell (tolDC)-based therapies have become a promising approach for the treatment of autoimmune diseases by their potential ability to restore immune tolerance in an antigen-specific manner. However, the broad variety of protocols used to generate tolDC in vitro and their functional and phenotypical heterogeneity are evidencing the need to find robust biomarkers as a key point towards their translation into the clinic, as well as better understanding the mechanisms involved in the induction of immune tolerance. With that aim, in this study we have compared the transcriptomic profile of tolDC induced with either vitamin D3 (vitD3-tolDC), dexamethasone (dexa-tolDC) or rapamycin (rapa-tolDC) through a microarray analysis in 5 healthy donors. The results evidenced that common differentially expressed genes could not be found for the three different tolDC protocols. However, individually, CYP24A1, MUCL1 and MAP7 for vitD3-tolDC; CD163, CCL18, C1QB and C1QC for dexa-tolDC; and CNGA1 and CYP7B1 for rapa-tolDC, constituted good candidate biomarkers for each respective cellular product. In addition, a further gene set enrichment analysis of the data revealed that dexa-tolDC and vitD3-tolDC share several immune regulatory and anti-inflammatory pathways, while rapa-tolDC seem to be playing a totally different role towards tolerance induction through a strong immunosuppression of their cellular processes
Transfection of Vitamin D3-Induced Tolerogenic Dendritic Cells for the Silencing of Potential Tolerogenic Genes. Identification of CSF1R-CSF1 Signaling as a Glycolytic Regulator
The use of autologous tolerogenic dendritic cells (tolDC) has become a promising strategy to re-establish immune tolerance in autoimmune diseases. Among the different strategies available, the use of vitamin D3 for the generation of tolDC (VitD3-tolDC) has been widely tested because of their immune regulatory properties. To identify molecules and pathways involved in the generation of VitD3-tolDC, we established an easy and fast gene silencing method based on the use of Viromer blue to introduce siRNA into monocytes on day 1 of culture differentiation. The analysis of the effect of CD209 (DC-SIGN) and CD115 (CSF1R) down-modulation on the phenotype and functionality of transfected VitD3-tolDC revealed a partial role of CD115 in their tolerogenicity. Further investigations showed that CSF1R-CSF1 signaling is involved in the induction of cell metabolic reprogramming, triggering glycolysis to produce high amounts of lactate, a novel suppressive mechanism of T cell proliferation, recently found in autologous tolerogenic dendritic cells (ATDCs)
Ethyl Pyruvate Induces Tolerogenic Dendritic Cells.
Dendritic cells (DC) are professional antigen presenting cells that have a key role in shaping the immune response. Tolerogenic DC (tolDC) have immuno-regulatory properties and they are a promising prospective therapy for multiple sclerosis and other autoimmune diseases. Ethyl pyruvate (EP) is a redox analog of dimethyl fumarate (Tecfidera), a drug for multiple sclerosis treatment. We have recently shown that EP ameliorates experimental autoimmune encephalomyelitis, a multiple sclerosis murine model. Here, we expanded our study to its tolerogenic effects on DC. Phenotypic analysis has shown that DC obtained from mice or humans reduce expression of molecules required for T cell activation such as CD86, CD83, and HLA-DR under the influence of EP, while CD11c expression and viability of DC are not affected. Furthermore, EP-treated DC restrain proliferation and modulate cytokine production of allogeneic lymphocytes. These results demonstrate that EP has the ability to direct DC toward tolDC
- …