692 research outputs found

    On the Whitham hierarchy: dressing scheme, string equations and additional symmetrie

    Get PDF
    A new description of the universal Whitham hierarchy in terms of a factorization problem in the Lie group of canonical transformations is provided. This scheme allows us to give a natural description of dressing transformations, string equations and additional symmetries for the Whitham hierarchy. We show how to dress any given solution and prove that any solution of the hierarchy may be undressed, and therefore comes from a factorization of a canonical transformation. A particulary important function, related to the τ\tau-function, appears as a potential of the hierarchy. We introduce a class of string equations which extends and contains previous classes of string equations considered by Krichever and by Takasaki and Takebe. The scheme is also applied for an convenient derivation of additional symmetries. Moreover, new functional symmetries of the Zakharov extension of the Benney gas equations are given and the action of additional symmetries over the potential in terms of linear PDEs is characterized

    The double scaling limit method in the Toda hierarchy

    Get PDF
    Critical points of semiclassical expansions of solutions to the dispersionful Toda hierarchy are considered and a double scaling limit method of regularization is formulated. The analogues of the critical points characterized by the strong conditions in the Hermitian matrix model are analyzed and the property of doubling of equations is proved. A wide family of sets of critical points is introduced and the corresponding double scaling limit expansions are discussed.Comment: 20 page

    On the Whitham hierarchy: dressing scheme, string equations and additional symmetrie

    Get PDF
    A new description of the universal Whitham hierarchy in terms of a factorization problem in the Lie group of canonical transformations is provided. This scheme allows us to give a natural description of dressing transformations, string equations and additional symmetries for the Whitham hierarchy. We show how to dress any given solution and prove that any solution of the hierarchy may be undressed, and therefore comes from a factorization of a canonical transformation. A particulary important function, related to the τ\tau-function, appears as a potential of the hierarchy. We introduce a class of string equations which extends and contains previous classes of string equations considered by Krichever and by Takasaki and Takebe. The scheme is also applied for an convenient derivation of additional symmetries. Moreover, new functional symmetries of the Zakharov extension of the Benney gas equations are given and the action of additional symmetries over the potential in terms of linear PDEs is characterized

    Hodograph solutions of the dispersionless coupled KdV hierarchies, critical points and the Euler-Poisson-Darboux equation

    Full text link
    It is shown that the hodograph solutions of the dispersionless coupled KdV (dcKdV) hierarchies describe critical and degenerate critical points of a scalar function which obeys the Euler-Poisson-Darboux equation. Singular sectors of each dcKdV hierarchy are found to be described by solutions of higher genus dcKdV hierarchies. Concrete solutions exhibiting shock type singularities are presented.Comment: 19 page

    Integrable Quasiclassical Deformations of Cubic Curves

    Get PDF
    A general scheme for determining and studying hydrodynamic type systems describing integrable deformations of algebraic curves is applied to cubic curves. Lagrange resolvents of the theory of cubic equations are used to derive and characterize these deformations.Comment: 24 page

    The multicomponent 2D Toda hierarchy: Discrete flows and string equations

    Get PDF
    The multicomponent 2D Toda hierarchy is analyzed through a factorization problem associated to an infinite-dimensional group. A new set of discrete flows is considered and the corresponding Lax and Zakharov--Shabat equations are characterized. Reductions of block Toeplitz and Hankel bi-infinite matrix types are proposed and studied. Orlov--Schulman operators, string equations and additional symmetries (discrete and continuous) are considered. The continuous-discrete Lax equations are shown to be equivalent to a factorization problem as well as to a set of string equations. A congruence method to derive site independent equations is presented and used to derive equations in the discrete multicomponent KP sector (and also for its modification) of the theory as well as dispersive Whitham equations.Comment: 27 pages. In the revised paper we improved the presentatio

    A Classification of Integrable Quasiclassical Deformations of Algebraic Curves

    Get PDF
    A previously introduced scheme for describing integrable deformations of of algebraic curves is completed. Lenard relations are used to characterize and classify these deformations in terms of hydrodynamic type systems. A general solution of the compatibility conditions for consistent deformations is given and expressions for the solutions of the corresponding Lenard relations are provided.Comment: 21 page

    Semiclassical expansions in the Toda hierarchy and the hermitian matrix model

    Get PDF
    An iterative algorithm for determining a class of solutions of the dispersionful 2-Toda hierarchy characterized by string equations is developed. This class includes the solution which underlies the large N-limit of the Hermitian matrix model in the one-cut case. It is also shown how the double scaling limit can be naturally formulated in this schemeComment: 22 page

    Singular sectors of the 1-layer Benney and dToda systems and their interrelations

    Get PDF
    Complete description of the singular sectors of the 1-layer Benney system (classical long wave equation) and dToda system is presented. Associated Euler-Poisson-Darboux equations E(1/2,1/2) and E(-1/2,-1/2) are the main tool in the analysis. A complete list of solutions of the 1-layer Benney system depending on two parameters and belonging to the singular sector is given. Relation between Euler-Poisson-Darboux equations E(a,a) with opposite sign of a is discussed.Comment: 15 pages; Theor. Mathem. Physics, 201

    Charged Free Fermions, Vertex Operators and Classical Theory of Conjugate Nets

    Full text link
    We show that the quantum field theoretical formulation of the τ\tau-function theory has a geometrical interpretation within the classical transformation theory of conjugate nets. In particular, we prove that i) the partial charge transformations preserving the neutral sector are Laplace transformations, ii) the basic vertex operators are Levy and adjoint Levy transformations and iii) the diagonal soliton vertex operators generate fundamental transformations. We also show that the bilinear identity for the multicomponent Kadomtsev-Petviashvili hierarchy becomes, through a generalized Miwa map, a bilinear identity for the multidimensional quadrilateral lattice equations.Comment: 28 pages, 3 Postscript figure
    corecore