A new description of the universal Whitham hierarchy in terms of a
factorization problem in the Lie group of canonical transformations is
provided. This scheme allows us to give a natural description of dressing
transformations, string equations and additional symmetries for the Whitham
hierarchy. We show how to dress any given solution and prove that any solution
of the hierarchy may be undressed, and therefore comes from a factorization of
a canonical transformation. A particulary important function, related to the
τ-function, appears as a potential of the hierarchy. We introduce a class
of string equations which extends and contains previous classes of string
equations considered by Krichever and by Takasaki and Takebe. The scheme is
also applied for an convenient derivation of additional symmetries. Moreover,
new functional symmetries of the Zakharov extension of the Benney gas equations
are given and the action of additional symmetries over the potential in terms
of linear PDEs is characterized