28,833 research outputs found

    Fast model predictive control for hydrogen outflow regulation in ethanol steam reformers

    Get PDF
    © 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.In the recent years, the presence of alternative power sources, such as solar panels, wind farms, hydropumps and hydrogen-based devices, has significantly increased. The reasons of this trend are clear: contributing to a reduction of gas emissions and dependency on fossil fuels. Hydrogen-based devices are of particular interest due to their significant efficiency and reliability. Reforming technologies are among the most economic and efficient ways of producing hydrogen. In this paper we consider the regulation of hydrogen outflow in an ethanol steam reformer (ESR). In particular, a fast model predictive control approach based on a finite step response model of the process is proposed. Simulations performed using a more realistic non-linear model show the effectiveness of the proposed approach in driving the ESR to different operating conditions while fulfilling input and output constraints.Peer ReviewedPostprint (author's final draft

    Soy protein enzymatic hydrolysis and polysaccharides interactions: differential performance on kinetic adsorption at air-water interface

    Get PDF
    The objective of the work was to study the impact of soy protein hydrolysis on kinetic adsorption to the air-water interface and the effect of polysaccharides addition. Was used soy protein (SP) and theirs hydrolysates of 2% (H1) and 5.4% (H2) degree of hydrolysis. The polysaccharides (PS) used were a surface active one called E4M and a non-surface active one, lamda carrageenan (C). The dynamic surface pressure of interfacial films was evaluated with a drop tensiometer. In this contribution, we have determined the kinetic parameters of adsorption to the air-water interface which determined the penetration (Kp) and rearrangement (Kr) rates of SP, H1, H2 and PS, as well as their mixed systems. It was observed an increase of Kp and Kr when the protein were hydrolyzed (from SP to H1), however, when degree of hydrolysis progresses to H2 the parameters decreased again. In other hand, considerable differences were not found between these two PS studied concerning the Kp to air-water interface at these conditions. In spite of the different surface active nature of the PS, the proteins seem to control the behavior of the protein-PS interactions. However, when Kr of mixed systems was analyzed, the degree of hydrolysis and PS nature started to have a huge importance. Hence, it could be observed synergic or antagonic effects on Kr of biopolymers at liquid interface depending to the degree of hydrolysis of protein analyzed and the type of PS selected.CYTED through project 105PI0274CYCYT through grant AGL2007-60045Junta de Andalucía through grant PO6-AGR-01535Universidad de Buenos Aires, Agencia Nacional de Promoción Científica y Tecnológica (PICT 2008-1901) and Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentin

    Coupling single molecule magnets to quantum circuits

    Get PDF
    In this work we study theoretically the coupling of single molecule magnets (SMMs) to a variety of quantum circuits, including microwave resonators with and without constrictions and flux qubits. The main results of this study is that it is possible to achieve strong and ultrastrong coupling regimes between SMM crystals and the superconducting circuit, with strong hints that such a coupling could also be reached for individual molecules close to constrictions. Building on the resulting coupling strengths and the typical coherence times of these molecules (of the order of microseconds), we conclude that SMMs can be used for coherent storage and manipulation of quantum information, either in the context of quantum computing or in quantum simulations. Throughout the work we also discuss in detail the family of molecules that are most suitable for such operations, based not only on the coupling strength, but also on the typical energy gaps and the simplicity with which they can be tuned and oriented. Finally, we also discuss practical advantages of SMMs, such as the possibility to fabricate the SMMs ensembles on the chip through the deposition of small droplets.Comment: 23 pages, 12 figure

    NanoSQUID magnetometry of individual cobalt nanoparticles grown by focused electron beam induced deposition

    Get PDF
    We demonstrate the operation of low-noise nano superconducting quantum interference devices (SQUIDs) based on the high critical field and high critical temperature superconductor YBa2_2Cu3_3O7_7 (YBCO) as ultra-sensitive magnetometers for single magnetic nanoparticles (MNPs). The nanoSQUIDs exploit the Josephson behavior of YBCO grain boundaries and have been patterned by focused ion beam milling. This allows to precisely define the lateral dimensions of the SQUIDs so as to achieve large magnetic coupling between the nanoloop and individual MNPs. By means of focused electron beam induced deposition, cobalt MNPs with typical size of several tens of nm have been grown directly on the surface of the sensors with nanometric spatial resolution. Remarkably, the nanoSQUIDs are operative over extremely broad ranges of applied magnetic field (-1 T <μ0H<< \mu_0 H < 1 T) and temperature (0.3 K <T<< T< 80 K). All these features together have allowed us to perform magnetization measurements under different ambient conditions and to detect the magnetization reversal of individual Co MNPs with magnetic moments (1 - 30) ×106μB\times 10^6\,\mu_{\rm B}. Depending on the dimensions and shape of the particles we have distinguished between two different magnetic states yielding different reversal mechanisms. The magnetization reversal is thermally activated over an energy barrier, which has been quantified for the (quasi) single-domain particles. Our measurements serve to show not only the high sensitivity achievable with YBCO nanoSQUIDs, but also demonstrate that these sensors are exceptional magnetometers for the investigation of the properties of individual nanomagnets

    Dalitz plot slope parameters for KπππK \to \pi\pi\pi decays and two particle interference

    Get PDF
    We study the possible distortion of phase-space in the decays KπππK \to \pi \pi \pi, which may result from final state interference among the decay products. Such distortion may influence the values of slope parameters extracted from the Dalitz plot distribution of these decays. We comment on the consequences on the magnitude of violation of the ΔI=1/2\mid \Delta I \mid = 1/2 rule in these decays.Comment: 17 pages, LaTex2e, 6 figures, v2 authors' affiliation modified, to appear in Mod. Phys. Lett.
    corecore