4,901 research outputs found

    A case for resource-conscious out-of-order processors

    Get PDF
    Modern out-of-order processors tolerate long-latency memory operations by supporting a large number of in-flight instructions. This is achieved in part through proper sizing of critical resources, such as register files or instruction queues. In light of the increasing gap between processor speed and memory latency, tolerating upcoming latencies in this way would require impractical sizes of such critical resources.To tackle this scalability problem, we make a case for resource-conscious out-of-order processors. We present quantitative evidence that critical resources are increasingly underutilized in these processors. We advocate that better use of such resources should be a priority in future research in processor architectures.Peer ReviewedPostprint (published version

    Epistemic indeterminism and methodological individualism: a comparison between Karl Popper and Friedrich Hayek

    Get PDF
    This paper explores the link between the case for indeterminism in an epistemological fashion and methodological individualism in the thought of two defenders of both stances: Karl Popper and Friedrich Hayek. The relation between these issues has not received much attention before and even less so with regard to these two thinkers. First, Popper’s defence of indeterminism from an epistemic viewpoint and Hayek’s views about the indeterminism of action are studied. Second, their positions about methodological individualism are considered. Finally, several comparative questions are aired

    Low impact velocity wastage in FBCs : experimental results and comparison between abrasion and erosion theories

    Get PDF
    The use of technologies related to combustion of coal in fluidized bed combustors (FBCs) present attractive advantages over conventional pulverized coal units. Some of the outstanding characteristics are: excellent heat transfer, low emission of contaminants, good combustion efficiencies and good fuel flexibility. However, FBC units can suffer materials deterioration due to particle interaction of solid particles with the heat transfer tubes immersed on the bed (Hou, 2004, Oka, 2004, Rademarkers et al., 1990). Among other issues, some of the most important factors believed to cause wear problems are: the motion of slowly but relatively coarse particles, particles loaded onto the surface by other particles, erosion by relatively fast-moving particles associated with bubbles, and abrasion by blocks of particles thrown into the surface by bubble collapse. Thus, erosion or abrasion processes can occur by a variety of causes. For the case of particle movement against in-bed surfaces, it has been suggested that there is no difference in the ability to cause degradation between solid particle erosion and low stress three body abrasion, and distinctions between the two forms of wear should not to be made (Levy, 1987)

    A mesoscopic stochastic model for the specific consumption rate in substrate-limited microbial growth

    Get PDF
    The specific consumption rate of substrate, as well as the associated specific growth rate, is an essential parameter in the mathematical description of substrate-limited microbial growth. In this paper we develop a completely new kinetic model of substrate transport, based on recent knowledge on the structural biology of transport proteins, which correctly describes very accurate experimental results at near-zero substrate concentration values found in the literature, where the widespread Michaelis-Menten model fails. Additionally, our model converges asymptotically to Michaelis-Menten predictions as substrate concentration increases. Instead of the single active site enzymatic reaction of Michaelis-Menten type, the proposed model assumes a multi-site kinetics, simplified as an apparent all-or-none mechanism for the transport, which is controlled by means of the local substrate concentration in the close vicinity of the transport protein. Besides, the model also assumes that this local concentration is not equal to the mean substrate concentration experimentally determined in the culture medium. Instead, we propose that it fluctuates with a mostly exponential distribution of Weibull type

    Vine vigor, yield and grape quality assessment by airborne remote sensing over three years: Analysis of unexpected relationships in cv. Tempranillo

    Get PDF
    © 2015 INIA. The prediction of grape composition is becoming more important due to the need of reducing the current levels of alcohol and pH of the wines, a problem that is exacerbated by climate change. This work presents a 3-year study of the spatial variability of grape composition in a rainfed Tempranillo vineyard located in Rioja (Spain). It is based on the acquisition of multispectral imagery at véraison (start of the ripening process); and zoning based on NDVI, to assess its performance for zonal management. The results reveal a high spatial variability within the plot, with a stable pattern over the years, even with very different climate conditions. NDVI was a good predictor of vegetative growth variables. However, the prediction of grape composition was more complex. Unexpectedly, anthocyanins were found to be higher in the highest vigor zone, which is probably related to the effects of climate change. This unexpected relationship is particularly discussed in the article.This work was financed by a CDTI (Spanish Centre for Industrial Technological Development) program IDI 20110576 in Bodegas Eguren Ugarte (Laguardia, Álava, Spain).Peer Reviewe

    Structural aspects of Hamilton-Jacobi theory

    Full text link
    In our previous papers [11,13] we showed that the Hamilton-Jacobi problem can be regarded as a way to describe a given dynamics on a phase space manifold in terms of a family of dynamics on a lower-dimensional manifold. We also showed how constants of the motion help to solve the Hamilton-Jacobi equation. Here we want to delve into this interpretation by considering the most general case: a dynamical system on a manifold that is described in terms of a family of dynamics (`slicing vector fields') on lower-dimensional manifolds. We identify the relevant geometric structures that lead from this decomposition of the dynamics to the classical Hamilton-Jacobi theory, by considering special cases like fibred manifolds and Hamiltonian dynamics, in the symplectic framework and the Poisson one. We also show how a set of functions on a tangent bundle can determine a second-order dynamics for which they are constants of the motion.Comment: 26 pages. Minor changes (some minor mistakes are corrected
    corecore