

Adrián Cristal†, José F. Martínez‡, Josep Llosa†, and Mateo Valero†

† Departament d’Arquitectura de Computadors
Universitat Politécnica de Catalunya

08034 Barcelona, Spain
{adrian,josepll,mateo}@ac.upc.es

‡ Computer Systems Laboratory
Cornell University

Ithaca, NY 14853 USA
martinez@csl.cornell.edu

A Case for Resource-conscious
Out-of-order Processors

64 64 128 256 512 1024 2048
0

0.5

1

Abstract—Modern out-of-order processors tolerate long-
latency memory operations by supporting a large number of in-
flight instructions. This is achieved in part through proper sizing
of critical resources, such as register files or instruction queues.
In light of the increasing gap between processor speed and
memory latency, tolerating upcoming latencies in this way would
require impractical sizes of such critical resources.

To tackle this scalability problem, we make a case for
resource-conscious out-of-order processors. We present
quantitative evidence that critical resources are increasingly
underutilized in these processors. We advocate that better use of
such resources should be a priority in future research in
processor architectures.

Index Terms—Out-of-order processor, memory latency,
instruction-level parallelism, resource utilization, checkpointing.

I. INTRODUCTION
HE gap between processor speed and memory latency is
continuously widening. In order to tolerate long-latency
memory operations, modern out-of-order processors

maintain a large number of in-flight instructions that
effectively hide such latencies. At current trends, however,
processors cannot keep up with this growing disparity, and as
a result, long-latency operations are increasingly more taxing
on performance.

Figure 1 is a motivating example of this problem. It shows
average IPCs attained by SpecFP and SpecInt applications in
simulations using variations of the processor and memory
models summarized in Table I. The three leftmost bars show
the effect of increasing memory latency on a processor with
64 entries in reorder buffer (ROB), instruction queues, and
register files. As memory latency increases, the limited
processor resources are unable to keep enough instructions in
flight and, as a result, the IPC drops dramatically.

By increasing the size of such resources, the processor can
conceivably support enough in-flight instructions to tolerate
long-latency operations. (Similar observations have been
made elsewhere [7][8].) In Figure 1, the remaining bars show
the effect that such idealized size increase has on IPC when
memory is set to a futuristic latency of 500 processor cycles.
Limited ROB, Regs, and Queue represent configurations with
a limited number of entries (as indicated on the X axis) in
ROB, register files, or instruction queues, respectively, and an
unlimited size of the other resources in each case.

In the case of SpecFP applications, performance suffers if
any one of these three resources is too small in size. However,
as the size of the limited resource increases, so does the IPC.

Only when all three resources are scaled up adequately can we
maintain enough number of in-flight instructions to bring the
IPC closer to that of a memory-insensitive configuration
(represented by Perfect L2 in each group).

In the case of integer applications, larger resources are still
insufficient to overcome long-latency operations. One reason
for this is that many in-flight instructions are not profitable, as
relatively frequent branch mispredictions squash a large
number of them. However, once hard-to-predict branches are
overcome (Perfect BrPred), increasingly higher IPCs are
obtained as resources scale up in size. (Still, the observed IPC
is far from that of Perfect (L2+BrPred), in part because of
pointer-chasing memory access patterns.)

In general, however, it is impractical to design processors
with thousands of entries in resources such as the ROB, the
register file, and the various queues, since this could adversely
affect clock cycle, pipeline depth, or both [13].

In this paper, we analyze resource utilization in out-of-order
processors, and quantitatively show that, behind this apparent
need to grow critical resources to support many in-flight
instructions, a significant fraction of such resources are in fact

T

1.5

2

2.5

3

3.5

4

 M
em

La
t =

 1
00

 5
00

 1
00

0

Limited ROB
Limited Regs
Limited Queue
Perfect L2

64 64 128 256 512 1024 2048
0

0.5

1

1.5

2

2.5

3
 M

em
La

t =
 1

00
 5

00
 1

00
0

Limited ROB
Limited Registers
Limited Queue
Perfect BrPred
Perfect L2
Perfect L2+BrPred

Figure 1. Average IPC of SpecFP and SpecInt applications varying size of
critical resources and L2 miss penalty.

Manuscript submitted: 5 June 2003. Manuscript accepted: 24 September 2003. Final
manuscript received: 15 October 2003.
 This work first appeared as Cornell Computer Systems Lab Tech. Rep. CSL-TR-
2003-1034, May 2003, and was presented in the MEDEA workshop, concurrently with
Intl. Conf. on Parallel Architectures and Compilation Techniques (PACT), Sep. 2003.

IEEE Computer Architecture Letters Vol. 2, 2003

Posted to IEEE & CSDL on 1/30/2006
DOI 10.1109/L-CA.2003.4 1556-6056/03/$20.00 © 2003 Published by the IEEE Computer Society

200 400 600 800 1000 1200 1400 1600 1800 2000

10%

25%

50%

75%

90%

100%
D

is
tr

ib
ut

io
n

of
 In

−
fli

gh
t I

ns
tr

uc
tio

ns

1168

1382

1607

1868

1955

2034

200 400 600 800 1000 1200 1400 1600

10%

25%

50%

75%

90%

100%

D
is

tr
ib

ut
io

n
of

 In
−

fli
gh

t I
ns

tr
uc

tio
ns

20

108

435

1004

1361

1756

Figure 2. Distribution function of in-flight instructions in SpecFP (left) and SpecInt (right) applications.

being wasted by blocked or executed instructions. We identify
the different causes of resource wasting, and motivate
research on resource-conscious processors to overcome
upcoming memory latencies. We provide some examples of
existing work in this direction.

TABLE I: BASE PROCESSOR CONFIGURATION
Element Entries

ROB 64-2k entries
Ld/St Queue 64-2k entries

Int Queue 64-2k entries
FP Queue 64-2k entries

Fetch/Decode/Commit 4/4/4
FUs 4 int/addr ALU, 2 int mult/div, 4+2 fp

adders+mult/div, 2 memory ports
Branch predictor 16k-entry GShare
Branch penalty 8 cycles
L1 Data cache 32 kB, 4 way, 32B/line, 3 cycles
L1 Inst. cache 32 kB, 4 way, 32B/line, 3 cycles

L2 cache 256 kB, 4 way, 64B/line, 15 cycles
TLB 64 entries, 4 way, 8kB page, 30 cycles

Memory 500 cycles
Int/FP Register file 64-2k/64-2k entries

II. RESOURCE UTILIZATION
Figure 2 shows the average cumulative distribution of in-

flight instructions for SpecFP and SpecInt applications,
obtained through simulations using the parameters of Table I.
An idealistic 2,048-entry ROB and enough entries in all other
resources are assumed. (This corresponds to the first bar of the
2,048-entry group in Figure 1.) Floating-point applications
have, on average, more than 1,500 instructions in flight 75%
of the time, while integer applications exhibit a relatively
moderate number of instructions in flight (under 500 50% of
the time).

Since each in-flight instruction is assigned an entry in the
ROB until it is retired, the ROB should be rather large in order
to support high memory latencies. Techniques to cope with
small ROBs [12] or to construct large virtual ROBs that allow
early release of uncommitted instructions [4] have been
proposed.

We now discuss the allocation of various other critical
resources, namely register file, instruction queues, and load
and store queues. For each resource, we plot the average
number of allocated entries against the number of in-flight
instructions. The X axis is adjusted according to the
distribution function shown in Figure 2.

A. Register files
Figure 3 shows the average number of allocated registers

against the distribution of in-flight instructions. Registers are
classified in four categories as follows:

Live registers contain values currently in use. Notice that
this class constitutes only ten to twenty percent of the total

number of allocated registers.
Blocked-Short registers have been allocated during rename,

but are blocked at the instruction queue waiting for the
execution of predecessor instructions that will issue shortly.
This class is shortlived by definition, and represents a
relatively small fraction of the allocated registers; therefore,
attacking this type of registers would be of limited impact.

On the other hand, Blocked-Long registers are still empty
because the producer instruction is blocked waiting for the
execution of some long-latency predecessor instruction (e.g., a
load miss). Conversely, Dead registers are no longer in use,
but they are still allocated because the superseding producer
instructions have not retired. Together, these two categories
constitute the largest fraction of allocated registers, and should
be the target of register management techniques. In Figure 3,
results for SpecFP applications show that, at the median
number of in-flight instructions (about 1,600), as many as 80
percent of the approximately 1,000 allocated floating-point
registers fall in one of these two categories. Techniques for
late physical register allocation [5], early register recycling

1168 1382 1607 1868 1955 2034
0

200

400

600

800

1000

1200

1400

F
P

 R
eg

is
te

rs

Dead
Blocked−Long
Blocked−Short
Live

10% 25% 50% 75% 90%

 20 108 435 1004 1361 1756
0

200

400

600

800

1000

In
t.

R
eg

is
te

rs

Dead
Blocked−Long
Blocked−Short
Live

10% 25% 50% 75% 90%

Figure 3. Breakdown of allocated floating-point and integer registers vs. no. of in-flight instructions in SpecFP (left) and SpecInt (right) applications,
respectively. The horizontal axis is adjusted following the distribution function of in-flight instructions in each case (Figure 2).

IEEE Computer Architecture Letters Vol. 2, 2003

1168 1382 1607 1868 1955 2034
0

100

200

300

400

500

600

F
P

 Q
ue

ue

Blocked−Long
Blocked−Short

10% 25% 50% 75% 90%

 20 108 435 1004 1361 1756
0

100

200

300

400

500

In
t.

Q
ue

ue

Blocked−Long
Blocked−Short

10% 25% 50% 75% 90%

Figure 4. Breakdown of allocated floating-point and integer instruction queue entries vs. no. of in-flight instructions for SpecFP (left) and SpecInt (right)
applications, respectively. The horizontal axis is adjusted following the distribution function of in-flight instructions in each case (Figure 2).

[4][10][11], or both [9], can make these registers available to
other instructions.

B. Instruction queues
Figure 4 shows the average number of allocated entries in

the floating-point queue (for SpecFP applications) and in the
integer queue (for SpecInt applications). Unless explicitly
noted, our comments are applicable to both.

Blocked-Short entries pertain to instructions that are waiting
for a functional unit or for results from short-latency
operations. This group represents a relatively small fraction of
the allocated entries.

Blocked-Long entries, however, correspond to instructions
that are blocked waiting for some long-latency instruction to
complete. This group represents by far the largest fraction of
entries allocated in the instruction queue: Figure 4 shows that,
in SpecFP applications, at about 1,600 in-flight instructions,
only 15 percent of the approximately 400 floating-point
instruction queue entries are not in this category. Multilevel
queues can be used to track this type of instructions,
delegating their handling to slower, but larger and less
complex structures [1][8][14][2].

C. Load queue
Figure 5 shows the average number of allocated load queue

entries. They are broken down in the following categories:
 Live entries correspond to loads that are being executed.

This type abounds in floating-point applications, in which
cache miss rates are higher than in their integer counterparts.
It also includes loads that have executed out of program order
with respect to some store whose address remains unresolved.
These loads and their dependent operations must be replayed
if the store is later found to overlap with the load.

Blocked-Short entries pertain to loads waiting for its
address to be produced by a short-latency operation.

Blocked-Long entries belong to load instructions whose

address depends on a long-latency operation. In the case of
integer applications, this represents a significant fraction of
the allocated load queue entries. This is because pointer chains
are quite common in this type of applications.

Finally, Dead entries correspond to load instructions that
have been executed and are not subject to replay traps, i.e., the
addresses of all previous stores in program order have been
resolved. For SpecFP applications, Figure 5 shows that, at
about 1,600 in-flight instructions, as many as 75 percent of the
approximately 400 allocated load queue entries are Dead.
Traditional out-of-order processors keep these entries until
their load retires, but aggressive implementations that recycle
them earlier been proposed [4][10].

D. Store queue
Figure 6 shows the average number of allocated store queue

entries. They are classified as follows:
Ready entries represent store instructions whose address

and source operand are available, and are only waiting to
reach the ROB head to execute. Under the right conditions,
these entries could be recycled before their store executes
[10]. In general, however, exception handling and other issues
still mandate in-order execution of stores.

Address Ready entries correspond to stores whose address
is ready, but are still waiting for the data. These represent a
significant part of all in-flight stores. In general, these entries
could also be recycled if disambiguation with earlier memory
operations is no longer necessary [10].

Blocked-Long entries relate to store instructions whose
address depends on a long-latency operation. Notice that this
category is nearly inexistent in floating point applications,
since it is mostly data and not addresses that depend on long-
latency operations.

Finally, Blocked-Short entries correspond to stores waiting
for its address to be produced by short-latency operations. At
about 1,600 in-flight instructions, Figure 6 shows that, in

1168 1382 1607 1868 1955 2034
0

100

200

300

400

500

600

LD
 Q

ue
ue

Dead
Blocked−Long
Blocked−Short
Live

10% 25% 50% 75% 90%

 20 108 435 1004 1361 1756
0

100

200

300

400

500

LD
 Q

ue
ue

Dead
Blocked−Long
Blocked−Short
Live

10% 25% 50% 75% 90%

Figure 5. Breakdown of no. of allocated load queue entries vs. no. of in-flight instructions in SpecFP (left) and SpecInt (right). The horizontal axis is adjusted
following the distribution function of in-flight instructions in each case (Figure 2).

IEEE Computer Architecture Letters Vol. 2, 2003

1168 1382 1607 1868 1955 2034
0

50

100

150

200

250

300

S
T

 Q
ue

ue

Ready
Address Ready
Blocked−Long
Blocked−Short

10% 25% 50% 75% 90%

 20 108 435 1004 1361 1756
0

50

100

150

200

250

S
T

 Q
ue

ue

Ready
Address Ready
Blocked−Long
Blocked−Short

10% 25% 50% 75% 90%

Figure 6. Breakdown of allocated store queue entries in SpecFP and SpecInt applications. The horizontal axis is adjusted following the distribution function of
in-flight instructions in each case (Figure 2).

SpecFP applications, only 25 percent of approximately 200
allocated store queue entries fall under this category.

III. CONCLUSION
This paper provides quantitative evidence that, in the

pursuit of large numbers of in-flight instructions to tolerate
long memory latencies in current out-of-order processors,
resources identified as critical to attaining high performance
are in fact increasingly underutilized. Specifically, we have
looked at register files, instruction queues, and load and store
queues. We have broken down allocated resources into several
categories according to how they are used, and found that a
significant fraction of allocated resources actually does not
contribute to execution.

These results point to future research that considers new,
more efficient ways of supporting a large number of in-flight
instructions, by reducing the amount and the complexity of
hardware resources.

Designing processors that support thousands of in-flight
instructions reopens classical research topics. Among those:

— Methods that allow the reuse of very large blocks of
instructions (potentially hundreds) that are re-executed several
times during the service of a very long-latency load.

— Continued research in branch prediction. Considering
Figure 1, for integer applications, more accurate branch
prediction is essential for a large number of in-flight
instructions to be meaningful.

— Research that allows multiple flows of control, such as
predicated execution and/or multipath execution, but on a
larger scale than previously considered. These techniques do
not provide impressive results in the context of short ROBs,
but they may in the context of thousands of in-flight
instructions.

— Methods that allow the design of very deep load-store
queues. Load-store queues must be made to scale with the
other structures.

Moreover, we believe that it is crucial to reconsider the way

current processors commit instructions in program order to
support precise exceptions. The results in this paper suggest
that the majority of the resources the processor needs to
support in-order commit are in fact severely underutilized
most of the time. We believe that much inefficiency can be
eliminated if processors support some form of coarse-grain
checkpointing, to reduce the size and overhead of critical
resources in the architecture such as ROB, register file,
instruction queues, or load/store queues. It is possible to
support precise exceptions with much fewer resources, at the
expense of some performance penalty when exceptions do

occur. One possible way is to apply checkpointing on a few,
very specific instructions, e.g., long-latency loads or hard-to-
predict branches, and allow some form of out-of-order commit
of the other instructions (and the release of their resources)
[2][3][4]. If checkpointing is applied strategically in this way,
traditional ROBs can become virtually unnecessary [4].
Another option is to checkpoint periodically, and allow eager
release of dead or likely-dead resources in all or part of the in-
flight instructions [4][9][10][11].

ACKNOWLEDGMENTS
We thank Yale Patt, Jim Smith, Guri Sohi, and Mark Hill

for useful feedback. This work was supported in part by the
Spanish Ministry of Science and Technology under Contract
TIC-2001-0956-C04-01.

REFERENCES
[1] E. Brekelbaum, J. Rupley II, C. Wilkerson, and B. Black. Hierarchical

instruction windows. In Intl. Symp. on Microarchitecture, Nov. 2002
[2] A. Cristal, D. Ortega, J. Llosa and M. Valero. Out-of-order commit

processors. In Intl. Symp. on High-Performance Computer Architecture,
Feb. 2004

[3] A. Cristal, D. Ortega, J. Llosa, M. Valero. Kilo-instruction processors.
Invited paper. ISHPC-V. In Intl. Symp. on High Performance
Computers, October 2003. Lecture Notes in Computer Science (LNCS)
2858, 2003

[4] A. Cristal, M. Valero, J. Llosa, and A. González. Large virtual ROBs by
processor checkpointing. Tech. Rep. UPC-DAC-2002-39, Universitat
Politécnica de Catalunya, July 2002

[5] A. González, J. González, and M. Valero. Virtual-physical registers. In
Intl. Symp. on High-Performance Computer Architecture, Jan.–Feb.
1998

[6] W. W. Hwu and Y. N. Patt. Checkpoint repair for out-of-order execution
machines. In Intl. Symp. on Computer Architecture, June 1987

[7] T. Karkhanis and J. E. Smith. A day in the life of a data cache miss. In
Wkshp. on Memory Performance Issues, in conjunction with Intl. Symp.
on Computer Architecture, July 2002

[8] A. R. Lebeck, J. Koppanalil, T. Li, and J. Patwardhan, and Eric
Rotenberg. A large, fast instruction window for tolerating cache misses.
In Intl. Symp. on Computer Architecture, June 2002

[9] J. F. Martínez, A. Cristal, M. Valero, and J. Llosa. Ephemeral registers.
Tech. Rep. CSL-TR-2003-1035, Computer Systems Lab, Cornell
University, June 2003

[10] J. F. Martínez, J. Renau, M. C. Huang, M. Prvulovic, and J. Torrellas.
Cherry: Checkpointed early resource recycling in out-of-order
microprocessors. In Intl. Symp. on Microarchitecture, Nov. 2002

[11] M. Moudgill, K. Pingali, and S. Vassiliadis. Register renaming and
dynamic speculation: An alternative approach. In Intl. Symp. on
Microarchitecture, Dec. 1993

[12] O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt. Runahead execution:
An alternative to very large instruction windows for out-of-order
processors. In Intl. Symp. on High-Performance Computer Architecture,
Feb. 2003

[13] S. Palacharla, N. P. Jouppi, and J. E. Smith. Complexity-effective
superscalar processors. In Intl. Symp. on Computer Architecture, June
1997

[14] S. E. Raasch, N. L. Binkert, and S. K. Reinhardt. A scalable instruction
queue design using dependence chains. In Intl. Symp. on Computer
Architecture, June 2002

IEEE Computer Architecture Letters Vol. 2, 2003

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

