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Abstract—Modern out-of-order processors tolerate long-
latency memory operations by supporting a large number of in-
flight instructions. This is achieved in part through proper sizing 
of critical resources, such as register files or instruction queues. 
In light of the increasing gap between processor speed and 
memory latency, tolerating upcoming latencies in this way would 
require impractical sizes of such critical resources. 

To tackle this scalability problem, we make a case for 
resource-conscious out-of-order processors. We present 
quantitative evidence that critical resources are increasingly 
underutilized in these processors. We advocate that better use of 
such resources should be a priority in future research in 
processor architectures. 
 

Index Terms—Out-of-order processor, memory latency, 
instruction-level parallelism, resource utilization, checkpointing. 

I. INTRODUCTION 
HE gap between processor speed and memory latency is 
continuously widening. In order to tolerate long-latency 
memory operations, modern out-of-order processors 

maintain a large number of in-flight instructions that 
effectively hide such latencies. At current trends, however, 
processors cannot keep up with this growing disparity, and as 
a result, long-latency operations are increasingly more taxing 
on performance. 

Figure 1 is a motivating example of this problem. It shows 
average IPCs attained by SpecFP and SpecInt applications in 
simulations using variations of the processor and memory 
models summarized in Table I. The three leftmost bars show 
the effect of increasing memory latency on a processor with 
64 entries in reorder buffer (ROB), instruction queues, and 
register files. As memory latency increases, the limited 
processor resources are unable to keep enough instructions in 
flight and, as a result, the IPC drops dramatically. 

By increasing the size of such resources, the processor can 
conceivably support enough in-flight instructions to tolerate 
long-latency operations. (Similar observations have been 
made elsewhere [7][8].) In Figure 1, the remaining bars show 
the effect that such idealized size increase has on IPC when 
memory is set to a futuristic latency of 500 processor cycles. 
Limited ROB, Regs, and Queue represent configurations with 
a limited number of entries (as indicated on the X axis) in 
ROB, register files, or instruction queues, respectively, and an 
unlimited size of the other resources in each case. 

In the case of SpecFP applications, performance suffers if 
any one of these three resources is too small in size. However, 
as the size of the limited resource increases, so does the IPC. 

Only when all three resources are scaled up adequately can we 
maintain enough number of in-flight instructions to bring the 
IPC closer to that of a memory-insensitive configuration 
(represented by Perfect L2 in each group). 

In the case of integer applications, larger resources are still 
insufficient to overcome long-latency operations. One reason 
for this is that many in-flight instructions are not profitable, as 
relatively frequent branch mispredictions squash a large 
number of them. However, once hard-to-predict branches are 
overcome (Perfect BrPred), increasingly higher IPCs are 
obtained as resources scale up in size. (Still, the observed IPC 
is far from that of Perfect (L2+BrPred), in part because of 
pointer-chasing memory access patterns.) 

In general, however, it is impractical to design processors 
with thousands of entries in resources such as the ROB, the 
register file, and the various queues, since this could adversely 
affect clock cycle, pipeline depth, or both [13]. 

In this paper, we analyze resource utilization in out-of-order 
processors, and quantitatively show that, behind this apparent 
need to grow critical resources to support many in-flight 
instructions, a significant fraction of such resources are in fact 
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Figure 1. Average IPC of SpecFP and SpecInt applications varying size of 
critical resources and L2 miss penalty. 
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Figure 2. Distribution function of in-flight instructions in SpecFP (left) and SpecInt (right) applications. 

being wasted by blocked or executed instructions. We identify 
the different causes of resource wasting, and motivate 
research on resource-conscious processors to overcome 
upcoming memory latencies. We provide some examples of 
existing work in this direction. 

TABLE I: BASE  PROCESSOR CONFIGURATION 
Element Entries 

ROB 64-2k entries 
Ld/St Queue 64-2k entries 

Int Queue 64-2k entries 
FP Queue 64-2k entries 

Fetch/Decode/Commit 4/4/4 
FUs 4 int/addr ALU, 2 int mult/div, 4+2 fp 

adders+mult/div, 2 memory ports 
Branch predictor 16k-entry GShare 
Branch penalty 8 cycles 
L1 Data cache 32 kB, 4 way, 32B/line, 3 cycles 
L1 Inst. cache 32 kB, 4 way, 32B/line, 3 cycles 

L2 cache 256 kB, 4 way, 64B/line, 15 cycles 
TLB 64 entries, 4 way, 8kB page, 30 cycles

Memory 500 cycles 
Int/FP Register file 64-2k/64-2k entries 

II.  RESOURCE UTILIZATION 
Figure 2 shows the average cumulative distribution of in-

flight instructions for SpecFP and SpecInt applications, 
obtained through simulations using the parameters of Table I. 
An idealistic 2,048-entry ROB and enough entries in all other 
resources are assumed. (This corresponds to the first bar of the 
2,048-entry group in Figure 1.) Floating-point applications 
have, on average, more than 1,500 instructions in flight 75% 
of the time, while integer applications exhibit a relatively 
moderate number of instructions in flight (under 500 50% of 
the time). 

Since each in-flight instruction is assigned an entry in the 
ROB until it is retired, the ROB should be rather large in order 
to support high memory latencies. Techniques to cope with 
small ROBs [12] or to construct large virtual ROBs that allow 
early release of uncommitted instructions [4] have been 
proposed. 

We now discuss the allocation of various other critical 
resources, namely register file, instruction queues, and load 
and store queues. For each resource, we plot the average 
number of allocated entries against the number of in-flight 
instructions. The X axis is adjusted according to the 
distribution function shown in Figure 2. 

A. Register files 
Figure 3 shows the average number of allocated registers 

against the distribution of in-flight instructions. Registers are 
classified in four categories as follows: 

Live registers contain values currently in use. Notice that 
this class constitutes only ten to twenty percent of the total 

number of allocated registers. 
Blocked-Short registers have been allocated during rename, 

but are blocked at the instruction queue waiting for the 
execution of predecessor instructions that will issue shortly. 
This class is shortlived by definition, and represents a 
relatively small fraction of the allocated registers; therefore, 
attacking this type of registers would be of limited impact. 

On the other hand, Blocked-Long registers are still empty 
because the producer instruction is blocked waiting for the 
execution of some long-latency predecessor instruction (e.g., a 
load miss). Conversely, Dead registers are no longer in use, 
but they are still allocated because the superseding producer 
instructions have not retired. Together, these two categories 
constitute the largest fraction of allocated registers, and should 
be the target of register management techniques. In Figure 3, 
results for SpecFP applications show that, at the median 
number of in-flight instructions (about 1,600), as many as 80 
percent of the approximately 1,000 allocated floating-point 
registers fall in one of these two categories. Techniques for 
late physical register allocation [5], early register recycling 
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Figure 3.  Breakdown of allocated floating-point and integer registers vs. no. of in-flight instructions in SpecFP (left) and SpecInt (right) applications, 
respectively. The horizontal axis is adjusted following the distribution function of in-flight instructions in each case (Figure 2). 
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Figure 4.  Breakdown of allocated floating-point and integer instruction queue entries vs. no. of in-flight instructions for SpecFP (left) and SpecInt (right) 
applications, respectively. The horizontal axis is adjusted following the distribution function of in-flight instructions in each case (Figure 2). 

[4][10][11], or both [9], can make these registers available to 
other instructions. 

B. Instruction queues 
Figure 4 shows the average number of allocated entries in 

the floating-point queue (for SpecFP applications) and in the 
integer queue (for SpecInt applications). Unless explicitly 
noted, our comments are applicable to both. 

Blocked-Short entries pertain to instructions that are waiting 
for a functional unit or for results from short-latency 
operations. This group represents a relatively small fraction of 
the allocated entries. 

Blocked-Long entries, however, correspond to instructions 
that are blocked waiting for some long-latency instruction to 
complete. This group represents by far the largest fraction of 
entries allocated in the instruction queue: Figure 4 shows that, 
in SpecFP applications, at about 1,600 in-flight instructions, 
only 15 percent of the approximately 400 floating-point 
instruction queue entries are not in this category. Multilevel 
queues can be used to track this type of instructions, 
delegating their handling to slower, but larger and less 
complex structures [1][8][14][2]. 

C. Load queue 
Figure 5 shows the average number of allocated load queue 

entries. They are broken down in the following categories: 
 Live entries correspond to loads that are being executed. 

This type abounds in floating-point applications, in which 
cache miss rates are higher than in their integer counterparts. 
It also includes loads that have executed out of program order 
with respect to some store whose address remains unresolved. 
These loads and their dependent operations must be replayed 
if the store is later found to overlap with the load. 

Blocked-Short entries pertain to loads waiting for its 
address to be produced by a short-latency operation.  

Blocked-Long entries belong to load instructions whose 

address depends on a long-latency operation. In the case of 
integer applications, this represents a significant fraction of 
the allocated load queue entries. This is because pointer chains 
are quite common in this type of applications. 

Finally, Dead entries correspond to load instructions that 
have been executed and are not subject to replay traps, i.e., the 
addresses of all previous stores in program order have been 
resolved. For SpecFP applications, Figure 5 shows that, at 
about 1,600 in-flight instructions, as many as 75 percent of the 
approximately 400 allocated load queue entries are Dead. 
Traditional out-of-order processors keep these entries until 
their load retires, but aggressive implementations that recycle 
them earlier been proposed [4][10]. 

D. Store queue 
Figure 6 shows the average number of allocated store queue 

entries. They are classified as follows: 
Ready entries represent store instructions whose address 

and source operand are available, and are only waiting to 
reach the ROB head to execute. Under the right conditions, 
these entries could be recycled before their store executes 
[10]. In general, however, exception handling and other issues 
still mandate in-order execution of stores. 

Address Ready entries correspond to stores whose address 
is ready, but are still waiting for the data. These represent a 
significant part of all in-flight stores. In general, these entries 
could also be recycled if disambiguation with earlier memory 
operations is no longer necessary [10].  

Blocked-Long entries relate to store instructions whose 
address depends on a long-latency operation. Notice that this 
category is nearly inexistent in floating point applications, 
since it is mostly data and not addresses that depend on long-
latency operations. 

Finally, Blocked-Short entries correspond to stores waiting 
for its address to be produced by short-latency operations. At 
about 1,600 in-flight instructions, Figure 6 shows that, in 
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Figure 5.  Breakdown of no. of allocated load queue entries vs. no. of in-flight instructions in SpecFP (left) and SpecInt (right). The horizontal axis is adjusted 
following the distribution function of in-flight instructions in each case (Figure 2). 
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Figure 6.  Breakdown of allocated store queue entries in SpecFP and SpecInt applications. The horizontal axis is adjusted following the distribution function of 
in-flight instructions in each case (Figure 2). 

SpecFP applications, only 25 percent of approximately 200 
allocated store queue entries fall under this category. 

III.  CONCLUSION 
This paper provides quantitative evidence that, in the 

pursuit of large numbers of in-flight instructions to tolerate 
long memory latencies in current out-of-order processors, 
resources identified as critical to attaining high performance 
are in fact increasingly underutilized. Specifically, we have 
looked at register files, instruction queues, and load and store 
queues. We have broken down allocated resources into several 
categories according to how they are used, and found that a 
significant fraction of allocated resources actually does not 
contribute to execution. 

These results point to future research that considers new, 
more efficient ways of supporting a large number of in-flight 
instructions, by reducing the amount and the complexity of 
hardware resources. 

Designing processors that support thousands of in-flight 
instructions reopens classical research topics. Among those: 

— Methods that allow the reuse of very large blocks of 
instructions (potentially hundreds) that are re-executed several 
times during the service of a very long-latency load. 

— Continued research in branch prediction. Considering 
Figure 1, for integer applications, more accurate branch 
prediction is essential for a large number of in-flight 
instructions to be meaningful.  

— Research that allows multiple flows of control, such as 
predicated execution and/or multipath execution, but on a 
larger scale than previously considered. These techniques do 
not provide impressive results in the context of short ROBs, 
but they may in the context of thousands of in-flight 
instructions. 

— Methods that allow the design of very deep load-store 
queues. Load-store queues must be made to scale with the 
other structures. 

 
Moreover, we believe that it is crucial to reconsider the way 

current processors commit instructions in program order to 
support precise exceptions. The results in this paper suggest 
that the majority of the resources the processor needs to 
support in-order commit are in fact severely underutilized 
most of the time. We believe that much inefficiency can be 
eliminated if processors support some form of coarse-grain 
checkpointing, to reduce the size and overhead of critical 
resources in the architecture such as ROB, register file, 
instruction queues, or load/store queues. It is possible to 
support precise exceptions with much fewer resources, at the 
expense of some performance penalty when exceptions do 

occur. One possible way is to apply checkpointing on a few, 
very specific instructions, e.g., long-latency loads or hard-to-
predict branches, and allow some form of out-of-order commit 
of the other instructions (and the release of their resources) 
[2][3][4]. If checkpointing is applied strategically in this way, 
traditional ROBs can become virtually unnecessary [4]. 
Another option is to checkpoint periodically, and allow eager 
release of dead or likely-dead resources in all or part of the in-
flight instructions [4][9][10][11]. 
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