25 research outputs found

    Special section guest editorial: Nanostructured thin films: Fabrication, characterization, and application

    Full text link
    Martín-Palma, Raúl José, Jen, Yijun, "Special section guest editorial: Nanostructured thin films: Fabrication, characterization, and application", Journal of Nanophotonics, Elsevier B.V., 5 (1), 51599, (2011). Copyright 2013 Society of Photo Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibite

    The impact of nanostructured silicon and hybrid materials on the thermoelectric performance of thermoelectric devices: review

    Full text link
    Nanostructured materials remarkably improve the overall properties of thermoelectric devices, mainly due to the increase in the surface-to-volume ratio. This behavior is attributed to an increased number of scattered phonons at the interfaces and boundaries of the nanostructures. Among many other materials, nanostructured Si was used to expand the power generation compared to bulk crystalline Si, which leads to a reduction in thermal conductivity. However, the use of nanostructured Si leads to a reduction in the electrical conductivity due to the formation of low dimensional features in the heavily doped Si regions. Accordingly, the fabrication of hybrid nanostructures based on nanostructured Si and other different nanostructured materials constitutes another strategy to combine a reduction in the thermal conductivity while keeping the good electrical conduction properties. This review deals with the properties of Si-based thermoelectric devices modified by different nanostructures and hybrid nanostructured material

    Introducción a la nanotecnología y sus aplicaciones militares

    Full text link
    La nanotecnología es una disciplina que ha atraído un enorme interés durante los últimos años. Sin embargo, tanto sus bases científi cas como sus áreas de aplicación resultan prácticamente desco nocidas. Se suele indicar que se trata de una tecnología revolucionaria, pero se ha hecho muy poca divulgación sobre su potencial y sus limitaciones. En este texto intentaremos arrojar algo de luz sobre sus fundamentos y sus aplicaciones militare

    The infiltration of silver nanoparticles into porous silicon for improving the performance of photonic devices

    Full text link
    Hybrid nanostructures have a great potential to improve the overall properties of photonic devices. In the present study, silver nanoparticles (AgNPs) were infiltrated into nanostructured porous silicon (PSi) layers, aiming at enhancing the optoelectronic performance of Si-based devices. More specifically, Schottky diodes with three different configurations were fabricated, using Al/Si/Au as the basic structure. This structure was modified by adding PSi and PSi + AgNPs layers. Their characteristic electrical parameters were accurately determined by fitting the current–voltage curves to the non-ideal diode equation. Furthermore, electrochemical impedance spectroscopy was used to determine the electrical parameters of the diodes in a wide frequency range by fitting the Nyquist plots to the appropriate equivalent circuit model. The experimental results show a remarkable enhancement in electrical conduction after the incorporation of metallic nanoparticles. Moreover, the spectral photoresponse was examined for various devices. An approximately 10-fold increment in photoresponse was observed after the addition of Ag nanoparticles to the porous structure

    Special section guest editorial: Nanostructured thin films V: Fundamentals and applications

    Full text link
    MacKay, Tom G., Jen, Yijun, Martín-Palma, Raúl José, "Special section guest editorial: Nanostructured thin films V: Fundamentals and applications" Journal of Nanophotonics, Elsevier B.V, 7, 73501, (2013). Copyright 2014 Society of Photo Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibite

    Special section guest editorial: Nanostructured thin films: From theoretical aspects to practical applications

    Full text link
    Martín-Palma, R.J., Jen, Y.J., Mackay, T.G., "Special section guest editorial: Nanostructured thin films: From theoretical aspects to practical applications", SPIE, 6, 061599, 2012. Copyright 2013. Society of Photo Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibite

    Nanoporous silicon-based surface patterns fabricated by UV laser interference techniques for biological applications

    Get PDF
    The fabrication of selectively functionalized micropatterns based on nanostructured porous silicon (nanoPS) by phase mask ultraviolet laser interference is presented here. This single-step process constitutes a flexible method for the fabrication of surface patterns with tailored properties. These surface patterns consist of alternate regions of almost untransformed nanoPS and areas where nanoPS is transformed into Si nanoparticles (Si NPs) as a result of the laser irradiation process. The size of the transformed areas as well as the diameter of the Si NPs can be straightforwardly tailored by controlling the main fabrications parameters including the porosity of the nanoPS layers, the laser interference period areas, and laser fluence. The surface patterns have been found to be appropriate candidates for the development of selectively-functionalized surfaces for biological applications mainly due to the biocompatibility of the untransformed nanoPS regions.Postprint (author's final draft

    Nanostructured porous silicon photonic crystal for applications in the infrared

    Full text link
    In the last decades great interest has been devoted to photonic crystals aiming at the creation of novel devices which can control light propagation. In the present work, two-dimensional (2D) and three-dimensional (3D) devices based on nanostructured porous silicon have been fabricated. 2D devices consist of a square mesh of 2 μm wide porous silicon veins, leaving 5x5 μm square air holes. 3D structures share the same design although multilayer porous silicon veins are used instead, providing an additional degree of modulation. These devices are fabricated from porous silicon single layers (for 2D structures) or multilayers (for 3D structures), opening air holes in them by means of 1KeV argon ion bombardment through the appropriate copper grids. For 2D structures, a complete photonic band gap for TE polarization is found in the thermal infrared range. For 3D structures, there are no complete band gaps, although several new partial gaps do exist in different high-symmetry directions. The simulation results suggest that these structures are very promising candidates for the development of low-cost photonic devices for their use in the thermal infrared rangeThe authors also gratefully acknowledge funding from Comunidad de Madrid (Spain) under project “Microseres” and Ministerio de Economía y Competitividad (Spain) under Research Project MAT2011-28345-C02-0

    Surface enhanced fluorescence of anti-tumoral drug emodin adsorbed on silver nanoparticles and loaded on porous silicon

    Full text link
    Fluorescence spectra of anti-tumoral drug emodin loaded on nanostructured porous silicon have been recorded. The use of colloidal nanoparticles allowed embedding of the drug without previous porous silicon functionalization and leads to the observation of an enhancement of fluorescence of the drug. Mean pore size of porous silicon matrices was 60 nm, while silver nanoparticles mean diameter was 50 nm. Atmospheric and vacuum conditions at room temperature were used to infiltrate emodin-silver nanoparticles complexes into porous silicon matrices. The drug was loaded after adsorption on metal surface, alone, and bound to bovine serum albumin. Methanol and water were used as solvents. Spectra with 1 μm spatial resolution of cross-section of porous silicon layers were recorded to observe the penetration of the drug. A maximum fluorescence enhancement factor of 24 was obtained when protein was loaded bound to albumin, and atmospheric conditions of inclusion were used. A better penetration was obtained using methanol as solvent when comparing with water. Complexes of emodin remain loaded for 30 days after preparation without an apparent degradation of the drug, although a decrease in the enhancement factor is observed. The study reported here constitutes the basis for designing a new drug delivery system with future applications in medicine and pharmacyThe Secretaria de Estado de Investigacion, Desarrollo e Innovacion (MINECO) (Project FIS2010-15405: Plasmonics: Enhanced Molecular Sensing on Metal Nanostructures (POEMS), Comunidad de Madrid (MICROSERES Project, S2009TIC-1476) and grupo investigación 950247 of the UCM are gratefully acknowledged for their financial support. David Gomez (characterization service from the ICTP-CSIC) is also acknowledged for the FE-SEM image

    Silicon-based photonic crystals fabricated using proton beam writing combined with electrochemical etching method

    Get PDF
    A method for fabrication of three-dimensional (3D) silicon nanostructures based on selective formation of porous silicon using ion beam irradiation of bulk p-type silicon followed by electrochemical etching is shown. It opens a route towards the fabrication of two-dimensional (2D) and 3D silicon-based photonic crystals with high flexibility and industrial compatibility. In this work, we present the fabrication of 2D photonic lattice and photonic slab structures and propose a process for the fabrication of 3D woodpile photonic crystals based on this approach. Simulated results of photonic band structures for the fabricated 2D photonic crystals show the presence of TE or TM gap in mid-infrared rang
    corecore