research

Surface enhanced fluorescence of anti-tumoral drug emodin adsorbed on silver nanoparticles and loaded on porous silicon

Abstract

Fluorescence spectra of anti-tumoral drug emodin loaded on nanostructured porous silicon have been recorded. The use of colloidal nanoparticles allowed embedding of the drug without previous porous silicon functionalization and leads to the observation of an enhancement of fluorescence of the drug. Mean pore size of porous silicon matrices was 60 nm, while silver nanoparticles mean diameter was 50 nm. Atmospheric and vacuum conditions at room temperature were used to infiltrate emodin-silver nanoparticles complexes into porous silicon matrices. The drug was loaded after adsorption on metal surface, alone, and bound to bovine serum albumin. Methanol and water were used as solvents. Spectra with 1 μm spatial resolution of cross-section of porous silicon layers were recorded to observe the penetration of the drug. A maximum fluorescence enhancement factor of 24 was obtained when protein was loaded bound to albumin, and atmospheric conditions of inclusion were used. A better penetration was obtained using methanol as solvent when comparing with water. Complexes of emodin remain loaded for 30 days after preparation without an apparent degradation of the drug, although a decrease in the enhancement factor is observed. The study reported here constitutes the basis for designing a new drug delivery system with future applications in medicine and pharmacyThe Secretaria de Estado de Investigacion, Desarrollo e Innovacion (MINECO) (Project FIS2010-15405: Plasmonics: Enhanced Molecular Sensing on Metal Nanostructures (POEMS), Comunidad de Madrid (MICROSERES Project, S2009TIC-1476) and grupo investigación 950247 of the UCM are gratefully acknowledged for their financial support. David Gomez (characterization service from the ICTP-CSIC) is also acknowledged for the FE-SEM image

    Similar works

    Full text

    thumbnail-image

    Available Versions