9,232 research outputs found

    Current perspectives of the signaling pathways directing neural crest induction.

    Get PDF
    The neural crest is a migratory population of embryonic cells with a tremendous potential to differentiate and contribute to nearly every organ system in the adult body. Over the past two decades, an incredible amount of research has given us a reasonable understanding of how these cells are generated. Neural crest induction involves the combinatorial input of multiple signaling pathways and transcription factors, and is thought to occur in two phases from gastrulation to neurulation. In the first phase, FGF and Wnt signaling induce NC progenitors at the border of the neural plate, activating the expression of members of the Msx, Pax, and Zic families, among others. In the second phase, BMP, Wnt, and Notch signaling maintain these progenitors and bring about the expression of definitive NC markers including Snail2, FoxD3, and Sox9/10. In recent years, additional signaling molecules and modulators of these pathways have been uncovered, creating an increasingly complex regulatory network. In this work, we provide a comprehensive review of the major signaling pathways that participate in neural crest induction, with a focus on recent developments and current perspectives. We provide a simplified model of early neural crest development and stress similarities and differences between four major model organisms: Xenopus, chick, zebrafish, and mouse

    X-ray spectral variability of seven LINER nuclei with XMM-Newton and Chandra data

    Full text link
    One of the most important features in active galactic nuclei (AGN) is the variability of their emission. Variability has been discovered at X-ray, UV, and radio frequencies on time scales from hours to years. Among the AGN family and according to theoretical studies, Low-Ionization Nuclear Emission Line Region (LINER) nuclei would be variable objects on long time scales. Our purpose is to investigate spectral X-ray variability in LINERs and to understand the nature of these kinds of objects, as well as their accretion mechanism. Chandra and XMM-Newton public archives were used to compile X-ray spectra of seven LINER nuclei at different epochs with time scales of years. To search for variability we fit all the spectra from the same object with a set of models, in order to identify the parameters responsible for the variability pattern. We also analyzed the light curves in order to search for short time scale (from hours to days) variability. Whenever possible, UV variability was also studied. We found spectral variability in four objects, with variations mostly related to hard energies (2-10 keV). These variations are due to changes in the soft excess, and/or changes in the absorber, and/or intrinsic variations of the source. Another two galaxies seem not to vary. Short time scale variations during individual observations were not found. Our analysis confirms the previously reported anticorrelation between the X-ray spectral index and the Eddington ratio, and also the correlation between the X-ray to UV flux ratio and the Eddington ratio. These results support an Advection Dominated Accretion Flow (ADAF) as the accretion mechanism in LINERs.Comment: 35 pages, 53 figures, recently accepted pape

    X-ray spectral variability of Seyfert 2 galaxies

    Get PDF
    Variability across the electromagnetic spectrum is a property of AGN that can help constraining the physical properties of these galaxies. This is the third of a serie of papers with the aim of studying the X-ray variability of different families of AGN. The main purpose of this work is to investigate the variability pattern in a sample of optically selected type 2 Seyfert galaxies. We use the 26 Seyferts in the Veron-Cetty and Veron catalogue with data available from Chandra and/or XMM-Newton public archives at different epochs, with timescales ranging from a few hours to years. All the spectra of the same source are simultaneously fitted and we let different parameters to vary in the model. Whenever possible, short-term variations and/or long-term UV flux variations are studied. We divide the sample in Compton-thick, Compton-thin, and changing-look candidates. Short-term variability at X-rays is not found. From the 25 analyzed sources, 11 show long-term variations; eight (out of 11) are Compton-thin, one (out of 12) is Compton-thick, and the two changing-look candidates are also variable. The main driver for the X-ray changes is related to the nuclear power (nine cases), while variations at soft energies or related with absorbers at hard X-rays are less common, and in many cases these variations are accompained with variations of the nuclear continuum. At UV frequencies nuclear variations are nor found. We report for the first time two changing-look candidates, MARK273 and NGC7319. A constant reflection component located far away from the nucleus plus a variable nuclear continuum are able to explain most of our results; the Compton-thick candidates are dominated by reflection, which supresses their continuum making them seem fainter, and not showing variations, while the Compton-thin and changing-look candidates show variations.Comment: Accepted for publication in A&

    X-ray spectral variability of LINERs selected from the Palomar sample

    Full text link
    Variability is a general property of active galactic nuclei (AGN). At X-rays, the way in which these changes occur is not yet clear. In the particular case of low ionisation nuclear emission line region (LINER) nuclei, variations on months/years timescales have been found for some objects, but the main driver of these changes is still an open question. The main purpose of this work is to investigate the X-ray variability in LINERs, including the main driver of such variations, and to search for eventual differences between type 1 and 2 objects. We use the 18 LINERs in the Palomar sample with data retrieved from Chandra and/or XMM-Newton archives corresponding to observations gathered at different epochs. All the spectra for the same object are simultaneously fitted in order to study long term variations. The nature of the variability patterns are studied allowing different parameters to vary during the spectral fit. Whenever possible, short term variations from the analysis of the light curves and UV variability are studied.Comment: 49 pages, accepted. arXiv admin note: text overlap with arXiv:1305.222

    Abundant Z-cyanomethanimine in the interstellar medium: paving the way to the synthesis of adenine

    Full text link
    We report the first detection in the interstellar medium of the Z-isomer of cyanomethanimine (HNCHCN), an HCN dimer proposed as precursor of adenine. We identified six transitions of Z-cyanomethanimine, along with five transitions of E-cyanomethanimine, using IRAM 30m observations towards the Galactic Center quiescent molecular cloud G+0.693. The Z-isomer has a column density of (2.0±\pm0.6)×\times1014^{14} cm2^{-2} and an abundance of 1.5×\times109^{-9}. The relative abundance ratio between the isomers is [Z/E]\sim6. This value cannot be explained by the two chemical formation routes previously proposed (gas-phase and grain surface), which predicts abundances ratios between 0.9 and 1.5. The observed [Z/E] ratio is in good agreement with thermodynamic equilibrium at the gas kinetic temperature (130-210 K). Since isomerization is not possible in the ISM, the two species may be formed at high temperature. New chemical models, including surface chemistry on dust grains and gas-phase reactions, should be explored to explain our findings. Whatever the formation mechanism, the high abundance of Z-HNCHCN shows that precursors of adenine are efficiently formed in the ISM.Comment: Accepted in Monthly Notices of the Royal Astronomical Society Letter

    Complex organic molecules in the Galactic Centre: the N-bearing family

    Full text link
    We present an unbiased spectral line survey toward the Galactic Centre (GC) quiescent giant molecular cloud (QGMC), G+0.693 using the GBT and IRAM 30\, telescopes. Our study highlights an extremely rich organic inventory of abundant amounts of nitrogen (N)-bearing species in a source without signatures of star formation. We report the detection of 17 N-bearing species in this source, of which 8 are complex organic molecules (COMs). A comparison of the derived abundances relative to H2_2 is made across various galactic and extragalactic environments. We conclude that the unique chemistry in this source is likely to be dominated by low-velocity shocks with X-rays/cosmic rays also playing an important role in the chemistry. Like previous findings obtained for O-bearing molecules, our results for N-bearing species suggest a more efficient hydrogenation of these species on dust grains in G+0.693 than in hot cores in the Galactic disk, as a consequence of the low dust temperatures coupled with energetic processing by X-ray/cosmic ray radiation in the GC.Comment: 24 pages, 23 figures, 7 tables, accepted for publication in MNRA

    Hysteresis and Fractional Matching in Thin Nb Films with Rectangular Arrays of Nanoscaled Magnetic Dots

    Full text link
    We have investigated the periodic pinning of magnetic flux quanta in thin Nb films with rectangular arrays of magnetic dots. In this type of pinning geometry, a change in the periodicity and shape of the minima in the magnetoresistance occurs for magnetic fields exceeding a certain threshold value. This has been explained recently in terms of a reconfiguration transition of the vortex lattice due to an increasing vortex-vortex interaction with increasing magnetic field. In this picture the dominating elastic energy at high fields forces the vortex lattice to form a square symmetry rather than being commensurate to the rectangular geometry of the pinning array. In this paper we present a comparative study of rectangular arrays with Ni-dots, Co-dots and holes. In the magnetic dot arrays, we found a strong fractional matching effect up to the second order matching field. In contrast, no clear fractional matching is seen after the reconfiguration. Additionally, we discovered the existence of hysteresis in the magnetoresistance in the crossover between the low and the high field regime. We found evidence that this effect is correlated to the reconfiguration phenomenon rather than to the magnetic state of the dots. The temperature and angular dependences of the effect have been measured and possible models are discussed to explain this behavior.Comment: 1 Table, 5 Figure

    Order in driven vortex lattices in superconducting Nb films with nanostructured pinning potentials

    Full text link
    Driven vortex lattices have been studied in a material with strong pinning, such as Nb films. Samples in which natural random pinning coexists with artificial ordered arrays of defects (submicrometric Ni dots) have been fabricated with different geometries (square, triangular and rectangular). Three different dynamic regimes are found: for low vortex velocities, there is a plastic regime in which random defects frustrate the effect of the ordered array; then, for vortex velocities in the range 1-100 m/s, there is a sudden increase in the interaction between the vortex lattice and the ordered dot array, independent on the geometry. This effect is associated to the onset of quasi long range order in the vortex lattice leading to an increase in the overlap between the vortex lattice and the magnetic dots array. Finally, at larger velocities the ordered array-vortex lattice interaction is suppresed again, in agreement with the behavior found in numerical simulations.Comment: 8 text pages + 4 figure
    corecore