20 research outputs found

    Differences in ammonium oxidizer abundance and N uptake capacity between epilithic and epipsammic biofilms in an urban stream

    Get PDF
    The capacity of stream biofilms to transform and assimilate N in highly N-loaded streams is essential to guarantee the water quality of freshwater resources in urbanized areas. However, the degree of N saturation experienced by urban streams and their response to acute increases in N concentration are largely unknown. We measured changes in the rates of NH4+ uptake (UNH4) and oxidation (UAO) resulting from experimental increases in NH4+-N concentration in mature biofilms growing downstream of a wastewater treatment plant (WWTP) and, thus, naturally exposed to high N concentration. We investigated the responses of UNH4 and UAO to NH4+-N increases and the abundance of NH4+ oxidizing bacteria and archaea (AOB and AOA) in epilithic and epipsammic biofilms. UNH4 and UAO increased with increasing NH4+-N concentration for the 2 biofilm types, suggesting no N saturation under ambient levels of NH4+-N. Thus, these biofilms can contribute to mitigating N excesses and the variability of NH4+-N concentrations from WWTP effluent inputs. The 2 biofilm types exhibited different Michaelis-Menten kinetics, indicating different capacity to respond to acute increases in NH4+-N concentration. Mean UNH4 and UAO were 5× higher in epilithic than epipsammic biofilms, coinciding with a higher abundance of AOA+AOB in the former than in the later (76 × 104 vs 14 × 104 copies/cm2). AOB derived from active sludge dominated in epilithic biofilms, so our results suggest that WWTP effluents can strongly influence in-stream NH4+ processing rates by increasing N inputs and by supplying AOA+AOB that are able to colonize some stream habitat

    Biofilm growth and nitrogen uptake responses to increases in nitrate and ammonium availability

    Get PDF
    Nitrate (NO3 −) and ammonium (NH4 +) are the two major dissolved inorganic nitrogen (DIN) species available in streams. Human activities increase stream DIN concentrations and modify the NO3 −:NH4 + ratio. However, few studies have examined biofilm responses to enrichment of both DIN species. We examined biofilm responses to variation in ambient concentrations and enrichments in either NO3 − or NH4 +. We incubated nutrient diffusing substrata (NDS) bioassays with three treatments (DIN-free, +NO3 − and +NH4 +) in five streams. Biomass-specific uptake rates (U spec ) of NO3 − and NH4 + were then measured using in situ additions of 15N-labeled NO3 − and NH4 +. Biomass (estimated from changes in carbon content) and algal accrual rates, as well as U spec -NO3 − of biofilms in DIN-free treatments varied among the streams in which the NDS had been incubated. Higher ambient DIN concentrations were only correlated with enhanced biofilm growth rates. U spec -NO3 − was one order of magnitude greater and more variable than U spec -NH4 +, however similar relative preference index (RPI) suggested that biofilms did not show a clear preference for either DIN species. Biofilm growth and DIN uptake in DIN-amended NDS (i.e., +NO3 − and +NH4 +) were consistently lower than in DIN-free NDS (i.e., control). Lower values in controls with respect to amended NDS were consistently more pronounced for algal accrual rates and U spec -NO3 − and for the +NH4 + than for the +NO3 − treatments. In particular, enrichment with NH4 + reduced biofilm U spec -NO3 − uptake, which has important implications for N cycling in high NH4 + streams

    A round-trip ticket: the importance of release processes for in-stream nutrient spiraling

    Get PDF
    Most nutrient-spiraling studies have focused on estimates of gross uptake (Ugross), which show that streams take up dissolved inorganic nutrients very efficiently. However, studies based on estimates of net uptake (Unet) emphasize that streams tend to be at biogeochemical steady state (i.e., Unet ≈ 0), at least on a time scale of hours. These findings suggest that streams can be highly reactive ecosystems but remain at short-term biogeochemical steady state if Ugross is counterbalanced by release (R), a process that remains widely unexplored. Here, we propose a novel approach to infer R by comparing Unet and Ugross estimated from ambient and plateau concentrations obtained from standard short-term nutrient additions along a reach. We used this approach to examine the temporal variation of R and its balance with Ugross in 2 streams with contrasting hydrological regime (i.e., perennial vs intermittent) during 2 years. We focused on the spiraling metrics of NH4+ and soluble reactive P (SRP), essential sources of N and P in stream ecosystems. R differed substantially between the 2 streams. The perennial stream had a higher proportion of dates with R > 0 and a 2× higher mean R than the intermittent stream for both nutrients. Despite these differences, the magnitude of R and Ugross tended to be similar for both nutrients within each stream, which lead to Unet ≈ 0 in most cases. A notable exception occurred for SRP in the intermittent stream, where R tended to be higher than Ugross during most of the winter period, probably because of desorption of P from stream sediments. Together, our findings shed light on the contribution of release processes to the dynamics of nutrient spiraling and support the idea that streams can be active ecosystems with high spiraling fluxes while simultaneously approaching short-term biogeochemical steady-state

    In-stream net uptake regulates inorganic nitrogen export from catchments under base flow conditions

    Full text link
    We aimed to investigate the temporal variation of in‐stream net dissolved inorganic nitrogen (DIN) areal uptake rates (UDIN, in μg N m−2 min−1) and its implications on regulating catchment N export, under base flow conditions. To do so, we estimated UDINfrom longitudinal profiles of ambient DIN concentration (nitrate + ammonium) in two streams on a monthly basis during two hydrological years (n = 45). We found that in‐stream DIN uptake and release did not offset each other (UDIN ≠ 0) in half of the dates, and that UDIN> 0 occurred mostly in autumn. Based on these reach‐scale uptake rates, we performed empirical calculations and model simulations to assess the potential of stream network DIN retention to regulate DIN export from catchments on an annual scale. The empirical approach consisted in up‐scalingUDIN by means of a dynamic stream network analysis that considered temporal and spatial variation of UDIN. The modeling approach consisted in applying different scenarios with the INCA model based on the natural range of empirical UDIN values. Our results showed that the contribution of stream network DIN retention to catchment DIN export increased when calculations accounted for the temporal variation of UDIN. Both approaches suggested that stream network DIN retention can significantly reduce DIN export from headwater catchments under base flow conditions (from 4% to 38%)

    Effects of riparian vegetation removal on nutrient retention in a Mediterranean stream

    Get PDF
    We examined the effects of riparian vegetation removal on algal dynamics and stream nutrient retention efficiency by comparing NH4-N and PO4-P uptake lengths from a logged and an unlogged reach in Riera Major, a forested Mediterranean stream in northeastern Spain. From June to September 1995, we executed 6 short-term additions of N (as NH4Cl) and P (as Na2HPO4) in a 200-m section to measure nutrient uptake lengths. The study site included 2 clearly differentiated reaches in terms of canopy cover by riparian trees: the first 100 m were completely logged (i.e., the logged reach) and the remaining 100 m were left intact (i.e., the shaded reach). Trees were removed from the banks of the logged reach in the winter previous to our sampling. In the shaded reach, riparian vegetation was dominated by alders (Alnus glutinosa). The study was conducted during summer and fall months when differences in light availability between the 2 reaches were greatest because of forest canopy conditions. Algal biomass and % of stream surface covered by algae were higher in the logged than in the shaded reach, indicating that logging had a stimulatory effect on algae in the stream. Overall, nutrient retention efficiency was higher (i.e., shorter uptake lengths) in the logged than in the shaded reach, especially for PO4-P. Despite a greater increase in PO4-P retention efficiency relative to that of NH4-N following logging, retention efficiency for NH4-N was higher than for PO4-P in both study reaches. The PO4-P mass-transfer coefficient was correlated with primary production in both study reaches, indicating that algal activity plays an important role in controlling PO4-P dynamics in this stream. In contrast, the NH4-N mass-transfer coefficient showed a positive relation-ship only with % of algal coverage in the logged reach, and was not correlated with any algal-related parameter in the shaded reach. The lack of correlation with algal production suggests that mechanisms other than algal activity (i.e., microbial heterotrophic processes or abiotic mechanisms) may also influence NH4-N retention in this stream. Overall, this study shows that logging disturbances in small shaded streams may alter in-stream ecological features that lead to changes in stream nutrient retention efficiency. Moreover, it emphasizes that alteration of the tight linkage between the stream channel and the adjacent riparian zone may directly and indirectly impact biogeochemical processes with implications for stream ecosystem functioning

    Riparian corridors: A new conceptual framework for assessingt nitrogen buffering across biomes

    Get PDF
    Anthropogenic activities have more than doubled the amount of reactive nitrogen circulating on Earth, creating excess nutrients across the terrestrial-aquatic gradient. These excess nutrients have caused worldwide eutrophication, fundamentally altering the functioning of freshwater and marine ecosystems. Riparian zones have been recognized to buffer diffuse nitrate pollution, reducing delivery to aquatic ecosystems, but nutrient removal is not their only function in river systems. In this paper, we propose a new conceptual framework to test the capacity of riparian corridors to retain, remove, and transfer nitrogen along the continuum from land to sea under different climatic conditions. Because longitudinal, lateral, and vertical connectivity in riparian corridors influences their functional role in landscapes, we highlight differences in these parameters across biomes. More specifically, we explore how the structure of riparian corridors shapes stream morphology (the river's spine), their multiple functions at the interface between the stream and its catchment (the skin), and their biogeochemical capacity to retain and remove nitrogen (the kidneys). We use the nitrogen cycle as an example because nitrogen pollution is one of the most pressing global environmental issues, influencing directly and indirectly virtually all ecosystems on Earth. As an initial test of the applicability of our interbiome approach, we present synthesis results of gross ammonification and net nitrification from diverse ecosystems

    Uptake and trophic transfer of nitrogen and carbon in a temperate forested headwater stream

    Get PDF
    In temperate headwater streams, riparian forests hinder the development of algae by reducing light availability and generate large inputs of detritus. Microbial assemblages associated with this detritus are expected to strongly influence in-stream elemental cycling. However, most research has focused on quantifying nitrogen (N) cycling while we know little about the coupling of N and carbon (C) cycling. We conducted a simultaneous whole-reach tracer addition of 15N-ammonium and 13C-acetate in a forested headwater stream to examine the importance of different primary uptake compartments (e.g. epilithic biofilm, leaves, small wood) on N and C uptake, storage, and transfer to consumers. We predicted high whole-reach uptake of N and C from the water column to satisfy requirements of microbial decomposers. We also predicted a dominant role of the abundant detrital compartments, especially leaf litter, in the uptake, storage and trophic transfer of these labile forms of N and C. Our results show efficient immobilization of both ammonium and acetate along the study reach. Leaf litter showed the highest percentage of contribution among all compartments to whole-reach ammonium and acetate uptake. We also found evidence of rapid transfer of N and C to higher trophic levels, thereby extending the retention time of these elements within the ecosystem. Overall, our study provides relevant insights into the influence of detritus on N and C cycling in headwater streams

    Consequences of an ecosystem state shift for nitrogen cycling in a desert stream

    Full text link
    Cessation of cattle grazing has resulted in the reestablishment of wetlands in some streams of the U.S. Southwest. Decades of cattle grazing prevented vascular plant growth in Sycamore Creek (Arizona, U.S.A.), resulting in stream reaches dominated by diatoms and filamentous green algae. Establishment of vascular plants can profoundly modify ecosystem processes; yet, the effects on nitrogen (N) cycling remain unexplored. We examined the consequences of this ecosystem state shift on N cycling in this N-limited desert stream. We compared results from whole-reach ammonium-N stable isotope (15NH4+) tracer additions conducted before (pre-wetland state) and 13 yr after (wetland state) free-range cattle removal from the watershed. Water column estimations showed that in-stream N uptake and storage were higher in the pre-wetland than in the wetland state. N turnover was also higher in the pre-wetland state, indicating that assimilated N was retained for shorter time in stream biomass. In addition, N uptake was mostly driven by assimilatory uptake regardless of the ecosystem state considered. Water column trends were mechanistically explained by the fact that the dominant primary uptake compartments in the pre-wetland state (i.e., algae and diatoms) had higher assimilatory uptake and turnover rates than those in the wetland state (i.e., vascular plants). Overall, results show that the shift in the composition and dominance of primary producers induced by the cessation of cattle grazing within the stream-riparian corridor changes in-stream N processing from a dominance of intense and fast N recycling to a prevalence of N retention in biomass of primary producers

    Nitrogen processing and the role of epilithic biofilms downstream of a wastewater treatment plant

    Get PDF
    We investigated how dissolved inorganic N (DIN) inputs from a wastewater treatment plant (WWTP) effluent are processed biogeochemically by the receiving stream. We examined longitudinal patterns of NH4+ and NO3− concentrations and their 15N signatures along a stream reach downstream of a WWTP. We compared the δ15N signatures of epilithic biofilms with those of DIN to assess the role of stream biofilms in N processing. We analyzed the δ15N signatures of biofilms coating light- and dark-side surfaces of cobbles separately to test whether light constrains functioning of biofilm communities. We sampled during 2 contrasting periods of the year (winter and summer) to explore whether changes in environmental conditions affected N biogeochemical processes. The study reach had a remarkable capacity for transformation and removal of DIN, but the magnitude and relevance of different biogeochemical pathways of N processing differed between seasons. In winter, assimilation and nitrification influenced downstream N fluxes. These processes were spatially segregated at the microhabitat scale, as indicated by a significant difference in the δ15N signature of light- and dark-side biofilms, a result suggesting that nitrification was mostly associated with dark-side biofilms. In summer, N processing was intensified, and denitrification became an important N removal pathway. The δ15N signatures of the light- and dark-side biofilms were similar, a result suggesting less spatial segregation of N cycling processes at this microhabitat scale. Collectively, our results highlight the capacity of WWTP-influenced streams to transform and remove WWTP-derived N inputs and indicate the active role of biofilms in these in-stream processes

    Supply, demand, and in-stream retention of dissolved organic carbon and nitrate during storms in Mediterranean forested headwater streams

    Get PDF
    The capacity of headwater streams to transform and retain organic matter and nutrients during base flow conditions has been largely demonstrated in the literature. Yet, most solute exporting occurs during storms, and thus, it becomes essential to understand the role of in-stream processes in regulating solute concentrations and exports during storm flow conditions. In this study, we explored patterns of solute supply, solute demand, and resulting in-stream solute retention for a number of individual storms from two Mediterranean streams (intermittent and perennial) that together encompassed a wide range of hydrological conditions. Our results indicate that more than 70% of the individual storms were chemodynamic (i.e., solute concentrations either increased or decreased with increasing discharge) at the two sites, for both dissolved organic carbon (DOC) and nitrate (NO−3). At the perennial stream, DOC and NO−3 concentrations did not show any clear pattern of storm response during both dry and wet periods, though deviations from chemostasis were generally larger for those events showing higher concentrations during storm flow. At the intermittent stream, DOC and NO−3 showed positive divergences from chemostasis during the wet period. In this site, DOC showed no clear pattern of storm response during the dry period, while many storms showed low NO−3 concentrations compared to chemostasis, suggesting either limited NO−3 sources or in-stream retention. At the two streams, in-stream biogeochemical demand during individual storms was either similar or higher than during base flow conditions for both DOC and NO−3. In-stream NO−3 demand resulted in substantial whole-reach retention during storms (up to 40%), indicating that in-stream biogeochemical processes substantially reduced downstream flux of terrestrial NO−3 inputs during storm events. Conversely, whole-reach DOC retention was relatively low (<10%), suggesting little ability to regulate DOC export and an energy subsidy to downstream ecosystems during storms. This study indicates that in-stream biogeochemical demand during storms can counterbalance solute supply to some extent and stresses the importance of considering the potential role of in-stream processes in shaping stream solute export during storms
    corecore