96 research outputs found

    Age Differences in Behavior and PET Activation Reveal Differences in Interference Resolution in Verbal Working Memory

    Get PDF
    Older adults were tested on a verbal working memory task that used the item-recognition paradigm. On some trials of this task, response-conflict was created by presenting test-items that were familiar but were not members of a current set of items stored in memory. These items required a negative response, but their familiarity biased subjects toward a positive response. Younger subjects show an interference effect on such trials, and this interference is accompanied by activation of a region of left lateral prefrontal cortex. However, there has been no evidence that the activation in this region is causally related to the interference that the subjects exhibit. In the present study, we demonstrate that older adults show more behavioral interference than younger subjects on this task, and they also show no reliable activation at the same lateral prefrontal site. This leads to the conclusion that this prefrontal site is functionally involved in mediating resolution among conflicting responses or among conflicting representations in working memory

    Age Differences in the Frontal Lateralization of Verbal and Spatial Working Memory Revealed by PET

    Get PDF
    Age-related decline in working memory figures prominently in theories of cognitive aging. However, the effects of aging on the neural substrate of working memory are largely unknown. Positron emission tomography (PET) was used to investigate verbal and spatial short-term storage (3 sec) in older and younger adults. Previous investigations with younger subjects performing these same tasks have revealed asymmetries in the lateral organization of verbal and spatial working memory. Using volume of interest (VOI) analyses that specifically compared activation at sites identified with working memory to their homologous twin in the opposite hemisphere, we show pronounced age differences in this organization, particularly in the frontal lobes: In younger adults, activation is predominantly left lateralized for verbal working memory, and right lateralized for spatial working memory, whereas older adults show a global pattern of anterior bilateral activation for both types of memory. Analyses of frontal subregions indicate that several underlying patterns contribute to global bilaterality in older adults: most notably, bilateral activation in areas associated with rehearsal, and paradoxical laterality in dorsolateral prefrontal sites (DLPFC; greater left activation for spatial and greater right activation for verbal). We consider several mechanisms that could account for these age differences including the possibility that bilateral activation reflects recruitment to compensate for neural decline

    Relational delegation

    Get PDF
    We analyze a cheap talk game with partial commitment by the principal. We first treat the principal's commitment power as exogenous and then endogenize it in an infinitely repeated game. We characterize optimal decision making for any commitment power and show when it takes the form of threshold delegation—in which case the agent can make any decision below a threshold—and centralization—in which case the agent has no discretion. For small biases, threshold delegation is optimal for any smooth distribution. Outsourcing can only be optimal if the principal's commitment power is sufficiently small

    Sleep Enforces the Temporal Order in Memory

    Get PDF
    BACKGROUND: Temporal sequence represents the main principle underlying episodic memory. The storage of temporal sequence information is thought to involve hippocampus-dependent memory systems, preserving temporal structure possibly via chaining of sequence elements in heteroassociative networks. Converging evidence indicates that sleep enhances the consolidation of recently acquired representations in the hippocampus-dependent declarative memory system. Yet, it is unknown if this consolidation process comprises strengthening of the temporal sequence structure of the representation as well, or is restricted to sequence elements independent of their temporal order. To address this issue we tested the influence of sleep on the strength of forward and backward associations in word-triplets. METHODOLOGY/PRINCIPAL FINDINGS: Subjects learned a list of 32 triplets of unrelated words, presented successively (A-B-C) in the center of a screen, and either slept normally or stayed awake in the subsequent night. After two days, retrieval was assessed for the triplets sequentially either in a forward direction (cueing with A and B and asking for B and C, respectively) or in a backward direction (cueing with C and B and asking for B and A, respectively). Memory was better for forward than backward associations (p<0.01). Sleep did not affect backward associations, but enhanced forward associations, specifically for the first (AB) transitions (p<0.01), which were generally more difficult to retrieve than the second transitions. CONCLUSIONS/SIGNIFICANCE: Our data demonstrate that consolidation during sleep strengthens the original temporal sequence structure in memory, presumably as a result of a replay of new representations during sleep in forward direction. Our finding suggests that the temporally directed replay of memory during sleep, apart from strengthening those traces, could be the key mechanism that explains how temporal order is integrated and maintained in the trace of an episodic memory

    Nonparametric permutation tests for functional neuroimaging: A primer with examples

    Full text link
    Requiring only minimal assumptions for validity, nonparametric permutation testing provides a flexible and intuitive methodology for the statistical analysis of data from functional neuroimaging experiments, at some computational expense. Introduced into the functional neuroimaging literature by Holmes et al. ([ 1996 ]: J Cereb Blood Flow Metab 16:7–22), the permutation approach readily accounts for the multiple comparisons problem implicit in the standard voxel-by-voxel hypothesis testing framework. When the appropriate assumptions hold, the nonparametric permutation approach gives results similar to those obtained from a comparable Statistical Parametric Mapping approach using a general linear model with multiple comparisons corrections derived from random field theory. For analyses with low degrees of freedom, such as single subject PET/SPECT experiments or multi-subject PET/SPECT or f MRI designs assessed for population effects, the nonparametric approach employing a locally pooled (smoothed) variance estimate can outperform the comparable Statistical Parametric Mapping approach. Thus, these nonparametric techniques can be used to verify the validity of less computationally expensive parametric approaches. Although the theory and relative advantages of permutation approaches have been discussed by various authors, there has been no accessible explication of the method, and no freely distributed software implementing it. Consequently, there have been few practical applications of the technique. This article, and the accompanying MATLAB software, attempts to address these issues. The standard nonparametric randomization and permutation testing ideas are developed at an accessible level, using practical examples from functional neuroimaging, and the extensions for multiple comparisons described. Three worked examples from PET and f MRI are presented, with discussion, and comparisons with standard parametric approaches made where appropriate. Practical considerations are given throughout, and relevant statistical concepts are expounded in appendices. Hum. Brain Mapping 15:1–25, 2001. © 2001 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/35194/1/1058_ftp.pd
    corecore