14,932 research outputs found

    Influence of bottom topography on integral constraints in zonal flows with parameterized potential vorticity fluxes

    Get PDF
    An integral constraint for eddy fluxes of potential vorticity (PV), corresponding to global momentum conservation, is applied to two-layer zonal quasi-geostrophic channel flow. This constraint must be satisfied for any type of parameterization of eddy PV fluxes. Bottom topography strongly influence the integral constraint compared to a flat bottom channel. An analytical solution for the mean flow solution has been found by using asymptotic expansion in a small parameter which is the ratio of the Rossby radius to the meridional extent of the channel. Applying the integral constraint to this solution, one can find restrictions for eddy PV transfer coefficients which relate the eddy fluxes of PV to the mean flow. These restrictions strongly deviate from restrictions for the channel with flat bottom topography

    Hemispheric Asymmetry of Globus Pallidus Explains Reward-related Posterior Alpha Modulation in Humans

    Get PDF
    While subcortical structures such as the basal ganglia (BG) have been widely explored in relation to motor control, recent evidence suggests that their mechanisms extend to the domain of attentional switching. We here investigated the subcortical involvement in reward related top-down control of visual alpha-band oscillations (8 – 13 Hz), which have been consistently linked to the mechanisms supporting the allocation of visual spatial attention. Given that items associated with contextual saliency (e.g. monetary reward or loss) attract attention, it is not surprising that alpha oscillations are further modulated by the saliency properties of the visual items. The executive network controlling such reward-dependent modulations of oscillatory brain activity has yet to be fully elucidated. Although such network has been explored in terms of cortico-cortical interaction, it likely relies also on the contribution of subcortical regions. To uncover this, we investigated whether derived measures of subcortical structural asymmetries could predict interhemispheric modulation of alpha power during a spatial attention task. We show that volumetric hemispheric lateralization of globus pallidus (GP) and thalamus (Th) explains individual hemispheric biases in the ability to modulate posterior alpha power. Importantly, for the GP, this effect became stronger when the value-saliency parings in the task increased. Our findings suggest that the Th and GP in humans are part of a subcortical executive control network, differently involved in modulating posterior alpha activity. Further investigation aimed at uncovering the interaction between subcortical and neocortical attentional networks would provide useful insight in future studies

    Computing the Loewner driving process of random curves in the half plane

    Full text link
    We simulate several models of random curves in the half plane and numerically compute their stochastic driving process (as given by the Loewner equation). Our models include models whose scaling limit is the Schramm-Loewner evolution (SLE) and models for which it is not. We study several tests of whether the driving process is Brownian motion. We find that just testing the normality of the process at a fixed time is not effective at determining if the process is Brownian motion. Tests that involve the independence of the increments of Brownian motion are much more effective. We also study the zipper algorithm for numerically computing the driving function of a simple curve. We give an implementation of this algorithm which runs in a time O(N^1.35) rather than the usual O(N^2), where N is the number of points on the curve.Comment: 20 pages, 4 figures. Changes to second version: added new paragraph to conclusion section; improved figures cosmeticall

    The Highly Miniaturised Radiation Monitor

    Full text link
    We present the design and preliminary calibration results of a novel highly miniaturised particle radiation monitor (HMRM) for spacecraft use. The HMRM device comprises a telescopic configuration of active pixel sensors enclosed in a titanium shield, with an estimated total mass of 52 g and volume of 15 cm3^3. The monitor is intended to provide real-time dosimetry and identification of energetic charged particles in fluxes of up to 108^8 cm2^{-2} s1^{-1} (omnidirectional). Achieving this capability with such a small instrument could open new prospects for radiation detection in space.Comment: 17 pages, 15 figure

    Submitted ta Health Physics Society

    Get PDF
    Abstract When evaluating a task involving the machining of volume-activated materials, accelerator health physicists must consider more than the surface contamination levels of the equipment and containment of loose shavings, dust or filings. Machining operations such as sawing, routing, welding, and grinding conducted on volume-activated material may pose a significant airborne radioactivity hazard to the worker. This paper presents a computer spreadsheet notebook that conservatively estimates the airborne radioactivity levels generated during machining operations performed on volume-activated materials. By knowing (1) the size and type of materials, (2) the dose rate at a given distances, and (3) limited process knowledge, the Derived Air Concentration (DAC) fraction can be estimated. This tool is flexible, taking into consideration that the process knowledge available for the different materials varies. It addresses the two most common geometries: thick plane and circular cylinder. Once the DAC fraction has been estimated, controls can be implemented to mitigate the hazard to the worker

    Simultaneous EUVE/ASCA/RXTE Observations of NGC 5548

    Get PDF
    We present simultaneous observations by EUVE, ASCA, and RXTE of the type~1 Seyfert galaxy NGC 5548. These data indicate that variations in the EUV emission (at 0.2\sim 0.2 keV) appear to lead similar modulations in higher energy (\ga 1 keV) X-rays by \sim10--30 ks. This is contrary to popular models which attribute the correlated variability of the EUV, UV and optical emission in type~1 Seyferts to reprocessing of higher energy radiation. This behavior instead suggests that the variability of the optical through EUV emission is an important driver for the variability of the harder X-rays which are likely produced by thermal Comptonization. We also investigate the spectral characteristics of the fluorescent iron Kα\alpha line and Compton reflection emission. In contrast to prior measurements of these spectral features, we find that the iron Kα\alpha line has a relatively small equivalent width (WKα100W_{K\alpha} \sim 100 eV) and that the reflection component is consistent with a covering factor which is significantly less than unity (Ω/2π0.4\Omega/2\pi \sim 0.4--0.5). Notably, although the 2--10 keV X-ray flux varies by ±25\sim \pm 25% and the derived reflection fraction appears to be constant throughout our observations, the flux in the Fe~Kα\alpha line is also constant. This behavior is difficult to reconcile in the context of standard Compton reflection models.Comment: 13 pages, 6 figures, LaTeX, uses emulateapj.sty and apjfonts.sty, submitted to Ap

    Interrelation between the pseudogap and the incoherent quasi-particle features of high-Tc superconductors

    Full text link
    Using a scenario of a hybridized mixture of localized bipolarons and conduction electrons, we demonstrate for the latter the simultaneous appearance of a pseudogap and of strong incoherent contributions to their quasi-particle spectrum which arise from phonon shake-off effects. This can be traced back to temporarily fluctuating local lattice deformations, giving rise to a double-peak structure in the pair distribution function, which should be a key feature in testing the origin of these incoherent contributions, recently seen in angle-resolved photoemission spectroscopy (ARPES).Comment: 4 pages, 3 figures, to be published in Phys. Rev. Let

    Fermi-LAT Observations of High- and Intermediate-Velocity Clouds: Tracing Cosmic Rays in the Halo of the Milky Way

    Full text link
    It is widely accepted that cosmic rays (CRs) up to at least PeV energies are Galactic in origin. Accelerated particles are injected into the interstellar medium where they propagate to the farthest reaches of the Milky Way, including a surrounding halo. The composition of CRs coming to the solar system can be measured directly and has been used to infer the details of CR propagation that are extrapolated to the whole Galaxy. In contrast, indirect methods, such as observations of gamma-ray emission from CR interactions with interstellar gas, have been employed to directly probe the CR densities in distant locations throughout the Galactic plane. In this article we use 73 months of data from the Fermi Large Area Telescope in the energy range between 300 MeV and 10 GeV to search for gamma-ray emission produced by CR interactions in several high- and intermediate-velocity clouds located at up to ~ 7 kpc above the Galactic plane. We achieve the first detection of intermediate-velocity clouds in gamma rays and set upper limits on the emission from the remaining targets, thereby tracing the distribution of CR nuclei in the halo for the first time. We find that the gamma-ray emissivity per H atom decreases with increasing distance from the plane at 97.5% confidence level. This corroborates the notion that CRs at the relevant energies originate in the Galactic disk. The emissivity of the upper intermediate-velocity Arch hints at a 50% decline of CR densities within 2 kpc from the plane. We compare our results to predictions of CR propagation models.Comment: Accepted for publication in the Astrophysical Journa
    corecore