39,556 research outputs found

    Separated flow over bodies of revolution using an unsteady discrete-vorticity cross wake. Part 1: Theory and application

    Get PDF
    A method is developed to determine the flow field of a body of revolution in separated flow. The technique employed is the use of the computer to integrate various solutions and solution properties of the sub-flow fields which made up the entire flow field without resorting to a finite difference solution to the complete Navier-Stokes equations. The technique entails the use of the unsteady cross flow analogy and a new solution to the required two-dimensional unsteady separated flow problem based upon an unsteady, discrete-vorticity wake. Data for the forces and moments on aerodynamic bodies at low speeds and high angle of attack (outside the range of linear inviscid theories) such that the flow is substantially separated are produced which compare well with experimental data. In addition, three dimensional steady separation regions and wake vortex patterns are determined

    The broad-band X-ray spectrum of a QSO sample

    Get PDF
    A sample of 25 QSOs was used to investigate the average spectrum between the soft X-ray energy band of the Einstein Observatory image proportional counter, and the higher energy band of the HEAO 1 A2 experiment. The spectrum is similar to thoe exhibited by Seyfert galaxies and narrow emission line galaxies above 2 keV. The spectrum is soft enough that if these objects are typical of the higher redshift, more radio-quiet QSOs, then it is possible to exclude QSOs as being the dominant origin of the diffuse X-ray background

    Separated flow over bodies of revolution using an unsteady discrete-vorticity cross wake. Part 2: Computer program description

    Get PDF
    A method is developed to determine the flow field of a body of revolution in separated flow. The computer was used to integrate various solutions and solution properties of the sub-flow fields which made up the entire flow field without resorting to a finite difference solution to the complete Navier-Stokes equations. The technique entails the use of the unsteady cross flow analogy and a new solution to the two-dimensional unsteady separated flow problem based upon an unsteady, discrete-vorticity wake. Data for the forces and moments on aerodynamic bodies at low speeds and high angle of attack (outside the range of linear inviscid theories) such that the flow is substantially separated are produced which compare well with experimental data. In addition, three dimensional steady separated regions and wake vortex patterns are determined. The computer program developed to perform the numerical calculations is described

    Mathematical morphology and applications in automated sunspot detection

    Get PDF
    This presentation discusses the mathematical morphology and applications in automated sunspot detection
    corecore