3,865 research outputs found

    Running: A Flexible Situated Study

    Get PDF
    This paper describes a situated study of personal informatics applications for running that had to be conducted in a flexible and pragmatic way to adjust for the context of use. A qualitative situated study highlighted important differences in runners' motivations, uncovering markedly different uses and preferences between people who run either for health or for pleasure, but also underscored how the physical nature of the interaction impacted data collection. By adjusting the method to be sensitive to the physical nature of the interaction and the preferences of the participants, a pragmatic situated approach provided insights into how these technologies are actually used

    Explainable Machine Learning for Real-Time Hypoglycemia and Hyperglycemia Prediction and Personalized Control Recommendations

    Get PDF
    BACKGROUND: The occurrences of acute complications arising from hypoglycemia and hyperglycemia peak as young adults with type 1 diabetes (T1D) take control of their own care. Continuous glucose monitoring (CGM) devices provide real-time glucose readings enabling users to manage their control proactively. Machine learning algorithms can use CGM data to make ahead-of-time risk predictions and provide insight into an individual’s longer term control. METHODS: We introduce explainable machine learning to make predictions of hypoglycemia (270 mg/dL) up to 60 minutes ahead of time. We train our models using CGM data from 153 people living with T1D in the CITY (CGM Intervention in Teens and Young Adults With Type 1 Diabetes)survey totaling more than 28 000 days of usage, which we summarize into (short-term, medium-term, and long-term) glucose control features along with demographic information. We use machine learning explanations (SHAP [SHapley Additive exPlanations]) to identify which features have been most important in predicting risk per user. RESULTS: Machine learning models (XGBoost) show excellent performance at predicting hypoglycemia (area under the receiver operating curve [AUROC]: 0.998, average precision: 0.953) and hyperglycemia (AUROC: 0.989, average precision: 0.931) in comparison with a baseline heuristic and logistic regression model. CONCLUSIONS: Maximizing model performance for glucose risk prediction and management is crucial to reduce the burden of alarm fatigue on CGM users. Machine learning enables more precise and timely predictions in comparison with baseline models. SHAP helps identify what about a CGM user’s glucose control has led to predictions of risk which can be used to reduce their long-term risk of complications

    Risk-based inspection as a cost-effective strategy to reduce human exposure to cysticerci of Taenia saginata in low-prevalence settings

    Get PDF
    Taenia saginata cysticercus is the larval stage of the zoonotic parasite Taenia saginata, with a life-cycle involving both cattle and humans. The public health impact is considered low. The current surveillance system, based on post-mortem inspection of carcasses has low sensitivity and leads to considerable economic burden. Therefore, in the interests of public health and food production efficiency, this study aims to explore the potential of risk-based and cost-effective meat inspection activities for the detection and control of T. saginata cysticercus in low prevalence settings

    Commutator Leavitt path algebras

    Full text link
    For any field K and directed graph E, we completely describe the elements of the Leavitt path algebra L_K(E) which lie in the commutator subspace [L_K(E),L_K(E)]. We then use this result to classify all Leavitt path algebras L_K(E) that satisfy L_K(E)=[L_K(E),L_K(E)]. We also show that these Leavitt path algebras have the additional (unusual) property that all their Lie ideals are (ring-theoretic) ideals, and construct examples of such rings with various ideal structures.Comment: 24 page

    Patient factors associated with non-attendance at colonoscopy after a positive screening faecal occult blood test

    Get PDF
    BACKGROUND: Screening participants with abnormal faecal occult blood test results who do not attend further testing are at high risk of colorectal cancer, yet little is known about their reasons for non-attendance. METHODS: We conducted a medical record review of 170 patients from two English Bowel Cancer Screening Programme centres who had abnormal guaiac faecal occult blood test screening tests between November 2011 and April 2013 but did not undergo colonoscopy. Using information from patient records, we coded and categorized reasons for non-attendance. RESULTS: Of the 170 patients, 82 were eligible for review, of whom 66 had at least one recorded reason for lack of colonoscopy follow-up. Reasons fell into seven main categories: (i) other commitments, (ii) unwillingness to have the test, (iii) a feeling that the faecal occult blood test result was a false positive, (iv) another health issue taking priority, (v) failing to complete bowel preparation, (vi) practical barriers (e.g. lack of transport), and (vii) having had or planning colonoscopy elsewhere. The most common single reasons were unwillingness to have a colonoscopy and being away. CONCLUSIONS: We identify a range of apparent reasons for colonoscopy non-attendance after a positive faecal occult blood test screening. Education regarding the interpretation of guaiac faecal occult blood test findings, offer of alternative confirmatory test options, and flexibility in the timing or location of subsequent testing might decrease non-attendance of diagnostic testing following positive faecal occult blood test

    Spin dynamics of molecular nanomagnets fully unraveled by four-dimensional inelastic neutron scattering

    Full text link
    Molecular nanomagnets are among the first examples of spin systems of finite size and have been test-beds for addressing a range of elusive but important phenomena in quantum dynamics. In fact, for short-enough timescales the spin wavefunctions evolve coherently according to the an appropriate cluster spin-Hamiltonian, whose structure can be tailored at the synthetic level to meet specific requirements. Unfortunately, to this point it has been impossible to determine the spin dynamics directly. If the molecule is sufficiently simple, the spin motion can be indirectly assessed by an approximate model Hamiltonian fitted to experimental measurements of various types. Here we show that recently-developed instrumentation yields the four-dimensional inelastic-neutron scattering function S(Q,E) in vast portions of reciprocal space and enables the spin dynamics to be determined with no need of any model Hamiltonian. We exploit the Cr8 antiferromagnetic ring as a benchmark to demonstrate the potential of this new approach. For the first time we extract a model-free picture of the quantum dynamics of a molecular nanomagnet. This allows us, for example, to examine how a quantum fluctuation propagates along the ring and to directly test the degree of validity of the N\'{e}el-vector-tunneling description of the spin dynamics

    Microwave amplification with nanomechanical resonators

    Full text link
    Sensitive measurement of electrical signals is at the heart of modern science and technology. According to quantum mechanics, any detector or amplifier is required to add a certain amount of noise to the signal, equaling at best the energy of quantum fluctuations. The quantum limit of added noise has nearly been reached with superconducting devices which take advantage of nonlinearities in Josephson junctions. Here, we introduce a new paradigm of amplification of microwave signals with the help of a mechanical oscillator. By relying on the radiation pressure force on a nanomechanical resonator, we provide an experimental demonstration and an analytical description of how the injection of microwaves induces coherent stimulated emission and signal amplification. This scheme, based on two linear oscillators, has the advantage of being conceptually and practically simpler than the Josephson junction devices, and, at the same time, has a high potential to reach quantum limited operation. With a measured signal amplification of 25 decibels and the addition of 20 quanta of noise, we anticipate near quantum-limited mechanical microwave amplification is feasible in various applications involving integrated electrical circuits.Comment: Main text + supplementary information. 14 pages, 3 figures (main text), 18 pages, 6 figures (supplementary information

    Sideband Cooling Micromechanical Motion to the Quantum Ground State

    Full text link
    The advent of laser cooling techniques revolutionized the study of many atomic-scale systems. This has fueled progress towards quantum computers by preparing trapped ions in their motional ground state, and generating new states of matter by achieving Bose-Einstein condensation of atomic vapors. Analogous cooling techniques provide a general and flexible method for preparing macroscopic objects in their motional ground state, bringing the powerful technology of micromechanics into the quantum regime. Cavity opto- or electro-mechanical systems achieve sideband cooling through the strong interaction between light and motion. However, entering the quantum regime, less than a single quantum of motion, has been elusive because sideband cooling has not sufficiently overwhelmed the coupling of mechanical systems to their hot environments. Here, we demonstrate sideband cooling of the motion of a micromechanical oscillator to the quantum ground state. Entering the quantum regime requires a large electromechanical interaction, which is achieved by embedding a micromechanical membrane into a superconducting microwave resonant circuit. In order to verify the cooling of the membrane motion into the quantum regime, we perform a near quantum-limited measurement of the microwave field, resolving this motion a factor of 5.1 from the Heisenberg limit. Furthermore, our device exhibits strong-coupling allowing coherent exchange of microwave photons and mechanical phonons. Simultaneously achieving strong coupling, ground state preparation and efficient measurement sets the stage for rapid advances in the control and detection of non-classical states of motion, possibly even testing quantum theory itself in the unexplored region of larger size and mass.Comment: 13 pages, 7 figure
    • …
    corecore