research

Commutator Leavitt path algebras

Abstract

For any field K and directed graph E, we completely describe the elements of the Leavitt path algebra L_K(E) which lie in the commutator subspace [L_K(E),L_K(E)]. We then use this result to classify all Leavitt path algebras L_K(E) that satisfy L_K(E)=[L_K(E),L_K(E)]. We also show that these Leavitt path algebras have the additional (unusual) property that all their Lie ideals are (ring-theoretic) ideals, and construct examples of such rings with various ideal structures.Comment: 24 page

    Similar works

    Full text

    thumbnail-image

    Available Versions