666 research outputs found
The representation of priors and decisions in the human parietal cortex
Animals actively sample their environment through orienting actions such as saccadic eye movements. Saccadic targets are selected based both on sensory evidence immediately preceding the saccade, and a “salience map” or prior built-up over multiple saccades. In the primate cortex, the selection of each individual saccade depends on competition between target-selective cells that ramp up their firing rate to saccade release. However, it is less clear how a cross-saccade prior might be implemented, either in neural firing or through an activity-silent mechanism such as modification of synaptic weights on sensory inputs. Here, we present evidence from magnetoencephalography for 2 distinct processes underlying the selection of the current saccade, and the representation of the prior, in human parietal cortex. While the classic ramping decision process for each saccade was reflected in neural firing rates (measured in the event-related field), a prior built-up over multiple saccades was implemented via modulation of the gain on sensory inputs from the preferred target, as evidenced by rapid frequency tagging. A cascade of computations over time (initial representation of the prior, followed by evidence accumulation and then an integration of prior and evidence) provides a mechanism by which a salience map may be built up across saccades in parietal cortex. It also provides insight into the apparent contradiction that inactivation of parietal cortex has been shown not to affect performance on single-trials, despite the presence of clear evidence accumulation signals in this region
Computing the Loewner driving process of random curves in the half plane
We simulate several models of random curves in the half plane and numerically
compute their stochastic driving process (as given by the Loewner equation).
Our models include models whose scaling limit is the Schramm-Loewner evolution
(SLE) and models for which it is not. We study several tests of whether the
driving process is Brownian motion. We find that just testing the normality of
the process at a fixed time is not effective at determining if the process is
Brownian motion. Tests that involve the independence of the increments of
Brownian motion are much more effective. We also study the zipper algorithm for
numerically computing the driving function of a simple curve. We give an
implementation of this algorithm which runs in a time O(N^1.35) rather than the
usual O(N^2), where N is the number of points on the curve.Comment: 20 pages, 4 figures. Changes to second version: added new paragraph
to conclusion section; improved figures cosmeticall
Independent causal contributions of alpha- and beta-band oscillations during movement selection
To select a movement, specific neuronal populations controlling particular features of that movement need to be activated, whereas other populations are downregulated. The selective (dis)inhibition of cortical sensorimotor populations is governed by rhythmic neural activity in the alpha (8–12 Hz) and beta (15–25 Hz) frequency range. However, it is unclear whether and how these rhythms contribute independently to motor behavior. Building on a recent dissociation of the sensorimotor alpha- and beta-band rhythms, we test the hypothesis that the beta-band rhythm governs the disinhibition of task-relevant neuronal populations, whereas the alpha-band rhythm suppresses neurons that may interfere with task performance. Cortical alpha- and beta-band rhythms were manipulated with transcranial alternating current stimulation (tACS) while human participants selected how to grasp an object. Stimulation was applied at either 10 or 20 Hz and was imposed on the sensorimotor cortex contralaterally or ipsilaterally to the grasping hand. In line with task-induced changes in endogenous spectral power, the effect of the tACS intervention depended on the frequency and site of stimulation. Whereas tACS stimulation generally increased movement selection times, 10 Hz stimulation led to relatively faster selection times when applied to the hemisphere ipsilateral to the grasping hand, compared with other stimulation conditions. These effects occurred selectively when multiple movements were considered. These observations functionally differentiate the causal contribution of alpha- and beta-band oscillations to movement selection. The findings suggest that sensorimotor beta-band rhythms disinhibit task-relevant populations, whereas alpha-band rhythms inhibit neuronal populations that could interfere with movement selection
National trends in heart failure mortality in men and women, United Kingdom, 2000–2017
Aims: To understand gender differences in the prognosis of women and men with heart failure, we compared mortality, cause of death and survival trends over time. Methods and results: We analysed UK primary care data for 26 725 women and 29 234 men over age 45 years with a new diagnosis of heart failure between 1 January 2000 and 31 December 2017 using the Clinical Practice Research Datalink, inpatient Hospital Episode Statistics and the Office for National Statistics death registry. Age-specific overall survival and cause-specific mortality rates were calculated by gender and year. During the study period 15 084 women and 15 822 men with heart failure died. Women were on average 5 years older at diagnosis (79.6 vs. 74.8 years). Median survival was lower in women compared to men (3.99 vs. 4.47 years), but women had a 14% age-adjusted lower risk of all-cause mortality [hazard ratio (HR) 0.86, 95% confidence interval (CI) 0.84–0.88]. Heart failure was equally likely to be cause of death in women and men (HR 1.03, 95% CI 0.96–1.12). There were modest improvements in survival for both genders, but these were greater in men. The reduction in mortality risk in women was greatest for those diagnosed in the community (HR 0.83, 95% CI 0.80–0.85). Conclusions: Women are diagnosed with heart failure older than men but have a better age-adjusted prognosis. Survival gains were less in women over the last two decades. Addressing gender differences in heart failure diagnostic and treatment pathways should be a clinical and research priority.</p
A magnetic field diagnostic for sonoluminescence
This study is motivated by the extraordinary process of single bubble
sonoluminescence (SBSL), where an acoustically driven spherical shock is
thought to power the emitted radiation. We propose new experiments using an
external magnetic field which can induce anisotropies in both the shock
propagation and radiation pattern. The effects will depend on the temperature,
conductivity, and size of the radiating region. Our predictions suggest that
such a laboratory experiment could serve as an important diagnostic in placing
bounds on these parameters and understanding the physics of sonoluminescence.Comment: Latex File, Two .eps files, 5 pages, submitted to PR
Erasmus Mundus Master of Bioethics: a case for an effective model for international bioethics education
Designing bioethics curriculum for international postgraduate students is a challenging task. There are at least two main questions, which have to be resolved in advance: (1) what is a purpose of a particular teaching program and (2) how to respectfully arrange a classroom for students coming from different cultural and professional backgrounds. In our paper we analyze the case of the Erasmus Mundus Master of Bioethics program and provide recommendations for international bioethics education. In our opinion teaching bioethics to postgraduate international students goes beyond curriculum. It means that such a program requires not only well-defined goals, including equipping students with necessary skills and knowledge, but also it should first and foremost facilitate positive group dynamics among students and enables them to engage in dialogue to learn from one another
EEGManyPipelines: A Large-scale, Grassroots Multi-analyst Study of Electroencephalography Analysis Practices in the Wild
The ongoing reproducibility crisis in psychology and cognitive neuroscience has sparked increasing calls to re-evaluate and reshape scientific culture and practices. Heeding those calls, we have recently launched the EEGManyPipelines project as a means to assess the robustness of EEG research in naturalistic conditions and experiment with an alternative model of conducting scientific research. One hundred sixty-eight analyst teams, encompassing 396 individual researchers from 37 countries, independently analyzed the same unpublished, representative EEG data set to test the same set of predefined hypotheses and then provided their analysis pipelines and reported outcomes. Here, we lay out how large-scale scientific projects can be set up in a grassroots, community-driven manner without a central organizing laboratory. We explain our recruitment strategy, our guidance for analysts, the eventual outputs of this project, and how it might have a lasting impact on the field
The Chandra Multi-Wavelength Project: Optical Spectroscopy and the Broadband Spectral Energy Distributions of X-ray Selected AGN
From optical spectroscopy of X-ray sources observed as part of ChaMP, we
present redshifts and classifications for a total of 1569 Chandra sources from
our targeted spectroscopic follow up using the FLWO, SAAO, WIYN, CTIO, KPNO,
Magellan, MMT and Gemini telescopes, and from archival SDSS spectroscopy. We
classify the optical counterparts as 50% BLAGN, 16% NELG, 14% ALG, and 20%
stars. We detect QSOs out to z~5.5 and galaxies out to z~3. We have compiled
extensive photometry from X-ray to radio bands. Together with our spectroscopic
information, this enables us to derive detailed SEDs for our extragalactic
sources. We fit a variety of templates to determine bolometric luminosities,
and to constrain AGN and starburst components where both are present. While
~58% of X-ray Seyferts require a starburst event to fit observed photometry
only 26% of the X-ray QSO population appear to have some kind of star formation
contribution. This is significantly lower than for the Seyferts, especially if
we take into account torus contamination at z>1 where the majority of our X-ray
QSOs lie. In addition, we observe a rapid drop of the percentage of starburst
contribution as X-ray luminosity increases. This is consistent with the
quenching of star formation by powerful QSOs, as predicted by the merger model,
or with a time lag between the peak of star formation and QSO activity. We have
tested the hypothesis that there should be a strong connection between X-ray
obscuration and star-formation but we do not find any association between X-ray
column density and star formation rate both in the general population or the
star-forming X-ray Seyferts. Our large compilation also allows us to report
here the identification of 81 XBONG, 78 z>3 X-ray sources and 8 Type-2 QSO
candidates. Also we have identified the highest redshift (z=5.4135) X-ray
selected QSO with optical spectroscopy.Comment: 17 pages, 16 figures, accepted for publication in ApJS. Full data
table and README file can be found online at
http://hea-www.harvard.edu/~pgreen/Papers.htm
Recommended from our members
Regression, developmental trajectory and associated problems in disorders in the autism spectrum: the SNAP study
We report rates of regression and associated findings in a population derived group of 255 children aged 9-14 years, participating in a prevalence study of autism spectrum disorders (ASD); 53 with narrowly defined autism, 105 with broader ASD and 97 with non-ASD neurodevelopmental problems, drawn from those with special educational needs within a population of 56,946 children. Language regression was reported in 30% with narrowly defined autism, 8% with broader ASD and less than 3% with developmental problems without ASD. A smaller group of children were identified who underwent a less clear setback. Regression was associated with higher rates of autistic symptoms and a deviation in developmental trajectory. Regression was not associated with epilepsy or gastrointestinal problems
Protocol for a double-blind placebo-controlled randomised controlled trial assessing the impact of oral semaglutide in amyloid positivity (ISAP) in community dwelling UK adults
Introduction: Glucagon-like peptide-1 receptor agonists (GLP-1 RAs), currently marketed for type 2 diabetes and obesity, may offer novel mechanisms to delay or prevent neurotoxicity associated with Alzheimer’s disease (AD). The impact of semaglutide in amyloid positivity (ISAP) trial is investigating whether the GLP-1 RA semaglutide reduces accumulation in the brain of cortical tau protein and neuroinflammation in individuals with preclinical/prodromal AD. Methods and analysis: ISAP is an investigator-led, randomised, double-blind, superiority trial of oral semaglutide compared with placebo. Up to 88 individuals aged ≥55 years with brain amyloid positivity as assessed by positron emission tomography (PET) or cerebrospinal fluid, and no or mild cognitive impairment, will be randomised. People with the low-affinity binding variant of the rs6971 allele of the Translocator Protein 18 kDa (TSPO) gene, which can interfere with interpreting TSPO PET scans (a measure of neuroinflammation), will be excluded. At baseline, participants undergo tau, TSPO PET and MRI scanning, and provide data on physical activity and cognition. Eligible individuals are randomised in a 1:1 ratio to once-daily oral semaglutide or placebo, starting at 3 mg and up-titrating to 14 mg over 8 weeks. They will attend safety visits and provide blood samples to measure AD biomarkers at weeks 4, 8, 26 and 39. All cognitive assessments are repeated at week 26. The last study visit will be at week 52, when all baseline measurements will be repeated. The primary end point is the 1-year change in tau PET signal. Ethics and dissemination: The study was approved by the West Midlands—Edgbaston Research Ethics Committee (22/WM/0013). The results of the study will be disseminated through scientific presentations and peer-reviewed publications. Trial registration number: ISRCTN71283871
- …