639 research outputs found

    Degradation of rural and urban great tit song: testing transmission efficiency

    Get PDF
    Acoustic signals play a fundamental role in avian territory defence and mate attraction. Several studies have now shown that spectral properties of bird song differ between urban and rural environments. Previously this has been attributed to competition for acoustic space as a result of low-frequency noise present in cities. However, the physical structure of urban areas may have a contributory effect. Here we investigate the sound degradation properties of woodland and city environments using both urban and rural great tit song. We show that although urban surroundings caused significantly less degradation to both songs, the transmission efficiency of rural song compared to urban song was significantly lower in the city. While differences between the two songs in woodland were generally minimal, some measures of the transmission efficiency of rural song were significantly lower than those of urban song, suggesting additional benefits to singing rural songs in this setting. In an attempt to create artificial urban song, we mimicked the increase in minimum frequency found several times previously in urban song. However, this did not replicate the same transmission properties as true urban song, suggesting changes in other song characteristics, such as temporal adjustments, are needed to further increase transmission of an avian signal in the city. We suggest that the structure of the acoustic environment, in addition to the background noise, plays an important role in signal adaptation

    Hospital Mortality in the United States following Acute Kidney Injury

    Get PDF
    Acute kidney injury (AKI) is a common reason for hospital admission and complication of many inpatient procedures. The temporal incidence of AKI and the association of AKI admissions with in-hospital mortality are a growing problem in the world today. In this review, we discuss the epidemiology of AKI and its association with in-hospital mortality in the United States. AKI has been growing at a rate of 14% per year since 2001. However, the in-hospital mortality associated with AKI has been on the decline starting with 21.9% in 2001 to 9.1 in 2011, even though the number of AKI-related in-hospital deaths increased almost twofold from 147,943 to 285,768 deaths. We discuss the importance of the 71% reduction in AKI-related mortality among hospitalized patients in the United States and draw on the discussion of whether or not this is a phenomenon of hospital billing (coding) or improvements to the management of AKI

    Incidence and In-Hospital Mortality of Acute Kidney Injury (AKI) and Dialysis Requiring AKI (AKI-D) After Cardiac Catheterization in the National Inpatient Sample

    Get PDF
    Background: Acute kidney injury (AKI) and dialysis‐requiring AKI (AKI‐D) are common, serious complications of cardiac procedures. Methods and Results: We evaluated 3 633 762 (17 765 214 weighted population) cardiac catheterization or percutaneous coronary intervention (PCI) hospital discharges from the nationally representative National Inpatient Sample to determine annual population incidence rates for AKI and AKI‐D in the United States from 2001 to 2011. Odds ratios for both conditions and associated in‐hospital mortality were calculated for each year in the study period using multiple logistic regression. The number of cardiac catheterization or PCI cases resulting in AKI rose almost 3‐fold from 2001 to 2011. The adjusted odds of AKI and AKI‐D per year among cardiac catheterization and PCI patients were 1.11 (95% CI: 1.10–1.12) and 1.01 (95% CI: 0.99–1.02), respectively. Most importantly, in‐hospital mortality significantly decreased from 2001 to 2011 for AKI (19.6–9.2%) and AKI‐D (28.3–19.9%), whereas odds of associated in‐hospital mortality were 0.50 (95% CI: 0.45–0.56) and 0.70 (95% CI: 0.55–0.93) in 2011 versus 2001, respectively. The population‐attributable risk of mortality for AKI and AKI‐D was 25.8% and 3.8% in 2001 and 41.1% and 6.5% in 2011, respectively. Males and females had similar patterns of AKI increase, although males outpaced females. Conclusions: The Incidence of AKI among cardiac catheterization and PCI patients has increased sharply in the United States, and this should be addressed by implementing prevention strategies. However, mortality has significantly declined, suggesting that efforts to manage AKI and AKI‐D after cardiac catheterization and PCI have reduced mortality

    Tissue-specific calibration of extracellular matrix material properties by transforming growth factor-beta and Runx2 in bone is required for hearing

    Get PDF
    Publisher version: http://www.nature.com/embor/journal/v11/n10/full/embor2010135.htmlDA - 20100917 IS - 1469-3178 (Electronic) IS - 1469-221X (Linking) LA - ENG PT - JOURNAL ARTICLEDA - 20100917 IS - 1469-3178 (Electronic) IS - 1469-221X (Linking) LA - ENG PT - JOURNAL ARTICLEDA - 20100917 IS - 1469-3178 (Electronic) IS - 1469-221X (Linking) LA - ENG PT - JOURNAL ARTICLEPhysical cues, such as extracellular matrix stiffness, direct cell differentiation and support tissue-specific function. Perturbation of these cues underlies diverse pathologies, including osteoarthritis, cardiovascular disease and cancer. However, the molecular mechanisms that establish tissue-specific material properties and link them to healthy tissue function are unknown. We show that Runx2, a key lineage-specific transcription factor, regulates the material properties of bone matrix through the same transforming growth factor-beta (TGFbeta)-responsive pathway that controls osteoblast differentiation. Deregulated TGFbeta or Runx2 function compromises the distinctly hard cochlear bone matrix and causes hearing loss, as seen in human cleidocranial dysplasia. In Runx2(+/-) mice, inhibition of TGFbeta signalling rescues both the material properties of the defective matrix, and hearing. This study elucidates the unknown cause of hearing loss in cleidocranial dysplasia, and demonstrates that a molecular pathway controlling cell differentiation also defines material properties of extracellular matrix. Furthermore, our results suggest that the careful regulation of these properties is essential for healthy tissue functio

    Calcification of the Planktonic Foraminiferaglobigerinabulloidesand Carbonate Ion Concentration Resultsfrom the Santa Barbara Basin

    Get PDF
    Planktonic foraminiferal calcification intensity, reflected by shell wall thickness, has been hypothesized to covary with the carbonate chemistry of seawater. Here we use both sediment trap and box core samples from the Santa Barbara Basin to evaluate the relationship between the calcification intensity of the planktonic foraminifera species Globigerina bulloides, measured by area density (µg/µm2), and the carbonate ion concentration of seawater ([CO32−]). We also evaluate the influence of both temperature and nutrient concentration ([PO43−]) on foraminiferal calcification and growth. The presence of two G. bulloides morphospecies with systematically different calcification properties and offset stable isotopic compositions was identified within sampling populations using distinguishing morphometric characteristics. The calcification temperature and by extension calcification depth of the more abundant “normal” G. bulloides morphospecies was determined using δ18O temperature estimates. Calcification depths vary seasonally with upwelling and were used to select the appropriate [CO32−], temperature, and [PO43−] depth measurements for comparison with area density. Seasonal upwelling in the study region also results in collinearity between independent variables complicating a straightforward statistical analysis. To address this issue, we use additional statistical diagnostics and a down core record to disentangle the respective roles of each parameter on G. bulloides calcification. Our results indicate that [CO32−] is the primary variable controlling calcification intensity while temperature influences shell size. We report a modern calibration for the normal G. bulloides morphospecies that can be used in down core studies of well‐preserved sediments to estimate past [CO32−]

    Targeting Current and Future Threats: Recent Methodological Trends in Environmental Antimicrobial Resistance Research and Their Relationships to Risk Assessment

    Get PDF
    Antimicrobial resistance (AMR) is a growing public health threat. Improved surveillance of AMR\u27s genetic indicators in environmental reservoirs should lead to a more comprehensive understanding of the problem at a global scale, as with SARS-CoV-2 monitoring in sewage. However, the “best” monitoring approach is unclear. Some scientific works have emphasized monitoring for the abundance of already-known antimicrobial resistance genes (ARGs); others have emphasized monitoring for the potential of new ARGs to arise. The goal of this study was to examine which methods were employed by highly-cited papers studying AMR in environmental engineering and agricultural systems, thus providing insight into current and future methodological trends for monitoring ARGs. We searched recent (2018–2020) literature documenting AMR in five environmental matrices: wastewater, surface water, drinking water, stormwater, and livestock manure. We selected the most highly-cited papers across these matrices (89 papers from 17809 initial results) and categorized them as using targeted methods (e.g., qPCR), non-targeted methods (e.g., shotgun metagenomics), or both. More than 80% of papers employed targeted methods. Only 33% employed non-targeted methods, and the use of targeted versus non-targeted methods varied by environmental matrix. We posit that improving AMR surveillance in environmental reservoirs requires assessing risk, and that different monitoring approaches imply different objectives for risk assessment. Targeted methods are appropriate for quantifying known threats, particularly in environmental matrices where direct human exposure is likely (e.g., drinking water). However, long-term studies employing non-targeted methods are needed to provide an understanding of how frequently new threats (i.e., novel ARGs) arise

    Identification of Differential Gene Expression in Brassica rapa Nectaries through Expressed Sequence Tag Analysis

    Get PDF
    BACKGROUND: Nectaries are the floral organs responsible for the synthesis and secretion of nectar. Despite their central roles in pollination biology, very little is understood about the molecular mechanisms underlying nectar production. This project was undertaken to identify genes potentially involved in mediating nectary form and function in Brassica rapa. METHODOLOGY AND PRINCIPAL FINDINGS: Four cDNA libraries were created using RNA isolated from the median and lateral nectaries of B. rapa flowers, with one normalized and one non-normalized library being generated from each tissue. Approximately 3,000 clones from each library were randomly sequenced from the 5' end to generate a total of 11,101 high quality expressed sequence tags (ESTs). Sequence assembly of all ESTs together allowed the identification of 1,453 contigs and 4,403 singleton sequences, with the Basic Localized Alignment Search Tool (BLAST) being used to identify 4,138 presumptive orthologs to Arabidopsis thaliana genes. Several genes differentially expressed between median and lateral nectaries were initially identified based upon the number of BLAST hits represented by independent ESTs, and later confirmed via reverse transcription polymerase chain reaction (RT PCR). RT PCR was also used to verify the expression patterns of eight putative orthologs to known Arabidopsis nectary-enriched genes. CONCLUSIONS/SIGNIFICANCE: This work provided a snapshot of gene expression in actively secreting B. rapa nectaries, and also allowed the identification of differential gene expression between median and lateral nectaries. Moreover, 207 orthologs to known nectary-enriched genes from Arabidopsis were identified through this analysis. The results suggest that genes involved in nectar production are conserved amongst the Brassicaceae, and also supply clones and sequence information that can be used to probe nectary function in B. rapa
    corecore