1,195 research outputs found

    Osterberg Load Cell Testing of a Deep Reinforced Concrete Pile

    Get PDF
    A pedestrian bridge was constructed between two portions of a hospital in Southern California. Potentially liquefiable soils were present to a depth of about 72 feet below the ground surface. Because of the liquefiable soils, the bridge was to be supported on 30- inch-diameter cast-in-place piles drilled to a depth of approximately 90 feet below the ground surface. A test pile was constructed to confirm the soil capacities for the bridge. An Osterberg Load cell (O-cell) was placed near the middle of the test pile, and the downward load capacities of the deeper soils (below the elevation of potentially liquefiable soils) were tested using the upper portion of the pile to provide reaction. Instrumentation of the test pile consisted of four pairs of vibrating wire strain gages mounted on the pile reinforcing cage at four depths. The strain gages were connected to a data acquisition unit used to record data during the pile load test. A pair of tell-tale rods connected to electronic dial gages monitored the movement of the lower plate of the O-cell. Another pair of tell-tale rods was used to monitor the movement of the top of pile during the test while a third pair of tell-tale rods was used to monitor the compression of the upper portion of the pile. The pile load test was successful in confirming the predicted pile capacities, and the production piles were installed. The Osterberg Load cell was an economical method of testing the pile for this particular application

    Preliminary Results of Solid Gas Generator Micropropulsion

    Get PDF
    A decomposing solid thruster concept, which creates a more benign thermal and chemical environment than solid propellant combustion, while maintaining, performance similar to solid combustion, is described. A Micro-Electro-Mechanical (MEMS) thruster concept with diode laser and fiber-optic initiation is proposed, and thruster components fabricated with MEMS technology are presented. A high nitrogen content solid gas generator compound is evaluated and tested in a conventional axisymmetric thrust chamber with nozzle throat area ratio of 100. Results show incomplete decomposition of this compound in both low pressure (1 kPa) and high pressure (1 MPa) environments, with decomposition of up to 80% of the original mass. Chamber pressures of 1.1 MPa were obtained, with maximum calculated thrust of approximately 2.7 N. Resistively heated wires and resistively heated walls were used to initiate decomposition. Initiation tests using available lasers were unsuccessful, but infrared spectra of the compound show that the laser initiation tests used inappropriate wavelengths for optimal propellant absorption. Optimal wavelengths for laser ignition were identified. Data presented are from tests currently in progress. Alternative solid gas generator compounds are being evaluated for future tests

    A Search for Exozodiacal Clouds with Kepler

    Get PDF
    Planets embedded within dust disks may drive the formation of large scale clumpy dust structures by trapping dust into resonant orbits. Detection and subsequent modeling of the dust structures would help constrain the mass and orbit of the planet and the disk architecture, give clues to the history of the planetary system, and provide a statistical estimate of disk asymmetry for future exoEarth-imaging missions. Here we present the first search for these resonant structures in the inner regions of planetary systems by analyzing the light curves of hot Jupiter planetary candidates identified by the Kepler mission. We detect only one candidate disk structure associated with KOI 838.01 at the 3-sigma confidence level, but subsequent radial velocity measurements reveal that KOI 838.01 is a grazing eclipsing binary and the candidate disk structure is a false positive. Using our null result, we place an upper limit on the frequency of dense exozodi structures created by hot Jupiters. We find that at the 90% confidence level, less than 21% of Kepler hot Jupiters create resonant dust clumps that lead and trail the planet by ~90 degrees with optical depths >~5*10^-6, which corresponds to the resonant structure expected for a lone hot Jupiter perturbing a dynamically cold dust disk 50 times as dense as the zodiacal cloud.Comment: 22 pages, 6 figures, Accepted for publication in Ap

    Chronic viral infection promotes sustained Th1-derived immunoregulatory IL-10 via BLIMP-1

    Get PDF
    During the course of many chronic viral infections, the antiviral T cell response becomes attenuated through a process that is regulated in part by the host. While elevated expression of the immunosuppressive cytokine IL-10 is involved in the suppression of viral-specific T cell responses, the relevant cellular sources of IL-10, as well as the pathways responsible for IL-10 induction, remain unclear. In this study, we traced IL-10 production over the course of chronic lymphocytic choriomeningitis virus (LCMV) infection in an IL-10 reporter mouse line. Using this model, we demonstrated that virus-specific T cells with reduced inflammatory function, particularly Th1 cells, display elevated and sustained IL-10 expression during chronic LCMV infection. Furthermore, ablation of IL-10 from the T cell compartment partially restored T cell function and reduced viral loads in LCMV-infected animals. We found that viral persistence is needed for sustained IL-10 production by Th1 cells and that the transcription factor BLIMP-1 is required for IL-10 expression by Th1 cells. Restimulation of Th1 cells from LCMV-infected mice promoted BLIMP-1 and subsequent IL-10 expression, suggesting that constant antigen exposure likely induces the BLIMP-1/IL-10 pathway during chronic viral infection. Together, these data indicate that effector T cells self-limit their responsiveness during persistent viral infection via an IL-10-dependent negative feedback loop.This work was supported by an Australian NHMRC Overseas Biomedical Postdoctoral Fellowship (to I.A. Parish); a Yale School of Medicine Brown-Coxe Postdoctoral Fellowship (to I.A. Parish); the Alexander von Humboldt Foundation (SKA2010, to P.A. Lang); a CIHR grant (to P.S. Ohashi); and by the Howard Hughes Medical Institute and NIH grant RO1AI074699 (to S.M. Kaech). P.S. Ohashi holds a Canada Research Chair in Autoimmunity and Tumor immunity

    Tracheostomy after Surgery for Congenital Heart Disease: An Analysis of the Society of Thoracic Surgeons Congenital Heart Surgery Database

    Get PDF
    Background Information concerning tracheostomy after operations for congenital heart disease has come primarily from single-center reports. We aimed to describe the epidemiology and outcomes associated with postoperative tracheostomy in a multi-institutional registry. Methods The Society of Thoracic Surgeons Congenital Heart Database (2000 to 2014) was queried for all index operations with the adverse event “postoperative tracheostomy” or “respiratory failure, requiring tracheostomy.” Patients with preoperative tracheostomy or weighing less than 2.5 kg undergoing isolated closure of patent ductus arteriosus were excluded. Trends in tracheostomy incidence over time from January 2000 to June 2014 were analyzed with a Cochran-Armitage test. The patient characteristics associated with operative mortality were analyzed for January 2010 to June 2014, including deaths occurring up to 6 months after transfer of patients to long-term care facilities. Results From 2000 to 2014, the incidence of tracheostomy after operations for congenital heart disease increased from 0.11% in 2000 to a high of 0.76% in 2012 (p < 0.0001). From 2010 to 2014, 648 patients underwent tracheostomy. The median age at operation was 2.5 months (25th, 75th percentile: 0.4, 7). Prematurity (n = 165, 26%), genetic abnormalities (n = 298, 46%), and preoperative mechanical ventilation (n = 275, 43%) were common. Postoperative adverse events were also common, including cardiac arrest (n = 131, 20%), extracorporeal support (n = 87, 13%), phrenic or laryngeal nerve injury (n = 114, 18%), and neurologic deficit (n = 51, 8%). The operative mortality was 25% (n = 153). Conclusions Tracheostomy as an adverse event of operations for congenital heart disease remains rare but has been increasingly used over the past 15 years. This trend and the considerable mortality risk among patients requiring postoperative tracheostomy support the need for further research in this complex population

    Stochastic virtual tests for fiber composites

    Get PDF
    We will describe a Virtual Test system for continuous fiber composites. The virtual test draws from a new wave of advanced experiments and theory that address physical, mathematical, and engineering aspects of material definition and failure prediction. The methods go far beyond currently standard tests and conventional FEM analysis to challenge our conception of what can constitute a practicable engineering approach. Emphasis will be given to high temperature ceramic matrix composites with textile reinforcement, which have been the subject material of the National Hypersonic Science Center, Materials and Structures, a joint AFOSR/NASA program. However, thematic topics also address generic fiber composites. Development has been organized as a “pipeline” that links the separate disciplinary efforts of groups housed in seven institutions spread across the United States. The main research steps are: high resolution three-dimensional (3D) imaging of the microstructure, statistical characterization of the microstructure, formulation of a probabilistic generator for creating virtual specimens that replicate the measured statistics, creation of a computational model for a virtual specimen that allows general representation of discrete damage events, calibration of the model using room and high temperature tests, simulation of failure, and model validation. Key new experiments include digital surface image correlation and µm-resolution 3D computed tomography imaging of the microstructure and evolving damage, both executed at temperatures exceeding 1500°C. Conceptual advances include using both geometry and topology to characterize stochastic microstructures. Computational methods include new probabilistic algorithms for generating stochastic virtual specimens and a new Augmented Finite Element Method that yields extreme efficiency in dealing with arbitrary cracking in heterogeneous materials. The challenge of relating variance in engineering properties to stochastic microstructure in a computationally tractable manner, while retaining necessary physical details in models, will be discussed

    Can we predict ectotherm responses to climate change using thermal performance curves and body temperatures?

    Get PDF
    Thermal performance curves (TPCs), which quantify how an ectotherm\u27s body temperature (Tb ) affects its performance or fitness, are often used in an attempt to predict organismal responses to climate change. Here, we examine the key - but often biologically unreasonable - assumptions underlying this approach; for example, that physiology and thermal regimes are invariant over ontogeny, space and time, and also that TPCs are independent of previously experienced Tb. We show how a critical consideration of these assumptions can lead to biologically useful hypotheses and experimental designs. For example, rather than assuming that TPCs are fixed during ontogeny, one can measure TPCs for each major life stage and incorporate these into stage-specific ecological models to reveal the life stage most likely to be vulnerable to climate change. Our overall goal is to explicitly examine the assumptions underlying the integration of TPCs with Tb , to develop a framework within which empiricists can place their work within these limitations, and to facilitate the application of thermal physiology to understanding the biological implications of climate change

    Nitric oxide precursors and congenital heart surgery: A randomized controlled trial of oral citrulline

    Get PDF
    ObjectiveThe study sought to determine whether citrulline supplementation, a precursor to nitric oxide synthesis, is safe and efficacious in increasing plasma citrulline concentrations and decreasing the risk of postoperative pulmonary hypertension.Study DesignForty children, undergoing cardiopulmonary bypass and at risk for pulmonary hypertension, were randomized to receive 5 perioperative doses (1.9 g/m2 per dose) of either oral citrulline or placebo. Plasma citrulline and arginine concentrations were measured at 5 time points. Measurements of systemic blood pressure and presence of pulmonary hypertension were collected.ResultsMedian citrulline concentrations were significantly higher in the citrulline group versus the placebo group immediately postoperatively (36 μmol/L vs 26 μmol/L, P = .012) and at 12 hours postoperatively (37 μmol/L vs 20 μmol/L, P = .015). Mean plasma arginine concentrations were significantly higher in the citrulline group versus the placebo group by 12 hours postoperatively (36 μmol/L vs 23 μmol/L, P = .037). Mean systemic blood pressure did not differ between groups (P = .53). Postoperative pulmonary hypertension developed in 9 patients, 6 of 20 (30%) in the placebo group and 3 of 20 (15%) in the citrulline group (P = .451), all of whom had plasma citrulline concentrations less than age-specific norms. Postoperative pulmonary hypertension did not develop in patients who demonstrated plasma citrulline concentrations in excess of 37 μmol/L (P = .036).ConclusionsOral citrulline supplementation safely increased plasma citrulline and arginine concentrations compared with placebo after cardiopulmonary bypass. Postoperative pulmonary hypertension did not occur in children with naturally elevated citrulline levels or elevations through supplementation. Oral citrulline supplementation may be effective in reducing postoperative pulmonary hypertension

    Feeding Kinematics, Suction, and Hydraulic Jetting Performance of Harbor Seals (Phoca vitulina)

    Get PDF
    The feeding kinematics, suction and hydraulic jetting capabilities of captive harbor seals (Phoca vitulina) were characterized during controlled feeding trials. Feeding trials were conducted using a feeding apparatus that allowed a choice between biting and suction, but also presented food that could be ingested only by suction. Subambient pressure exerted during suction feeding behaviors was directly measured using pressure transducers. The mean feeding cycle duration for suction-feeding events was significantly shorter (0.15±0.09 s; P<0.01) than biting feeding events (0.18±0.08 s). Subjects feeding in-water used both a suction and a biting feeding mode. Suction was the favored feeding mode (84% of all feeding events) compared to biting, but biting comprised 16% of feeding events. In addition, seals occasionally alternated suction with hydraulic jetting, or used hydraulic jetting independently, to remove fish from the apparatus. Suction and biting feeding modes were kinematically distinct regardless of feeding location (in-water vs. on-land). Suction was characterized by a significantly smaller gape (1.3±0.23 cm; P<0.001) and gape angle (12.9±2.02°), pursing of the rostral lips to form a circular aperture, and pursing of the lateral lips to occlude lateral gape. Biting was characterized by a large gape (3.63±0.21 cm) and gape angle (28.8±1.80°; P<0.001) and lip curling to expose teeth. The maximum subambient pressure recorded was 48.8 kPa. In addition, harbor seals were able to jet water at food items using suprambient pressure, also known as hydraulic jetting. The maximum hydraulic jetting force recorded was 53.9 kPa. Suction and hydraulic jetting where employed 90.5% and 9.5%, respectively, during underwater feeding events. Harbor seals displayed a wide repertoire of behaviorally flexible feeding strategies to ingest fish from the feeding apparatus. Such flexibility of feeding strategies and biomechanics likely forms the basis of their opportunistic, generalized feeding ecology and concomitant breadth of diet
    corecore