1,933 research outputs found

    The Turn-On of Mass Transfer in AM CVn Binaries: Implications for RX J0806+1527 and RX J1914+2456

    Get PDF
    We report on evolutionary calculations of the onset of mass transfer in AM CVn binaries, treating the donor's evolution in detail. We show that during the early contact phase, while the mass transfer rate, \Mdot, is increasing, gravity wave (GW) emission continues to drive the binary to shorter orbital period, \Porb. We argue that the phase where \Mdot > 0 and \nudot > 0 (\nu = 1/\Porb) can last between 10310^3 and 10610^6 yrs, significantly longer than previously estimated. These results are applied to RX J0806+1527 (\Porb = 321 s) and RX J914+2456 (\Porb=569 s), both of which have measured \nudot > 0. \emph{Thus, a \nudot > 0 does not select between the unipolar inductor and accretion driven models proposed as the source of X-rays in these systems}. For the accretion model, we predict for RX J0806 that \ddot{\nu} \approx \ee{1.0-1.5}{-28} Hz s−2^{-2} and argue that timing observations can probe ν¨\ddot{\nu} at this level with a total ≈20\approx 20 yr baseline. We also place constraints on each system's initial parameters given current observational data.Comment: 5 pages, 3 figures, accepted to ApJ

    Optimal transport on wireless networks

    Get PDF
    We present a study of the application of a variant of a recently introduced heuristic algorithm for the optimization of transport routes on complex networks to the problem of finding the optimal routes of communication between nodes on wireless networks. Our algorithm iteratively balances network traffic by minimizing the maximum node betweenness on the network. The variant we consider specifically accounts for the broadcast restrictions imposed by wireless communication by using a different betweenness measure. We compare the performance of our algorithm to two other known algorithms and find that our algorithm achieves the highest transport capacity both for minimum node degree geometric networks, which are directed geometric networks that model wireless communication networks, and for configuration model networks that are uncorrelated scale-free networks.Comment: 5 pages, 4 figure

    On the binary nature of 1RXS J162848.1-415241

    Get PDF
    We present spectroscopy of the optical counterpart to 1RXS J162848.1-41524, also known as the microquasar candidate MCQC J162847-4152. All the data indicate that this X-ray source is not a microquasar, and that it is a single-lined chromospherically active binary system with a likely orbital period of 4.9 days. Our analysis supports a K3IV spectral classification for the star, which is dominant at optical wavelengths. The unseen binary component is most likely a late-type (K7-M) dwarf or a white dwarf. Using the high resolution spectra we have measured the K3 star's rotational broadening to be vsini = 43 +/- 3 km/s and determined a lower limit to the binary mass ratio of q(=M2/M1)>2.0. The high rotational broadening together with the strong CaII H & K / Halpha emission and high-amplitude photometric variations indicate that the evolved star is very chromospherically active and responsible for the X-ray/radio emission.Comment: 15 pages, 5 figures, accepted for publication in Ap

    Techniques for Arbuscular Mycorrhiza Inoculum Reduction

    Get PDF
    It is well established that arbuscular mycorrhizal (AM) fungi can play a significant role in sustainable crop production and environmental conservation. With the increasing awareness of the ecological significance of mycorrhizas and their diversity, research needs to be directed away from simple records of their occurrence or casual speculation of their function (Smith and Read 1997). Rather, the need is for empirical studies and investigations of the quantitative aspects of the distribution of different types and their contribution to the function of ecosystems. There is no such thing as a fungal effect or a plant effect, but there is an interaction between both symbionts. This results from the AM fungi and plant community size and structure, soil and climatic conditions, and the interplay between all these factors (Kahiluoto et al. 2000). Consequently, it is readily understood that it is the problems associated with methodology that limit our understanding of the functioning and effects of AM fungi within field communities. Given the ubiquous presence of AM fungi, a major constraint to the evaluation of the activity of AM colonisation has been the need to account for the indigenous soil native inoculum. This has to be controlled (i.e. reduced or eliminated) if we are to obtain a true control treatment for analysis of arbuscular mycorrhizas in natural substrates. There are various procedures possible for achieving such an objective, and the purpose of this chapter is to provide details of a number of techniques and present some evaluation of their advantages and disadvantages. Although there have been a large number of experiments to investigated the effectiveness of different sterilization procedures for reducing pathogenic soil fungi, little information is available on their impact on beneficial organisms such as AM fungi. Furthermore, some of the techniques have been shown to affect physical and chemical soil characteristics as well as eliminate soil microorganisms that can interfere with the development of mycorrhizas, and this creates difficulties in the interpretation of results simply in terms of possible mycorrhizal activity. An important subject is the differentiation of methods that involve sterilization from those focussed on indigenous inoculum reduction. Soil sterilization aims to destroy or eliminate microbial cells while maintaining the existing chemical and physical characteristics of the soil (Wolf and Skipper 1994). Consequently, it is often used for experiments focussed on specific AM fungi, or to establish a negative control in some other types of study. In contrast, the purpose of inoculum reduction techniques is to create a perturbation that will interfere with mycorrhizal formation, although not necessarily eliminating any component group within the inoculum. Such an approach allows the establishment of different degrees of mycorrhizal formation between treatments and the study of relative effects. Frequently the basic techniques used to achieve complete sterilization or just an inoculum reduction may be similar but the desired outcome is accomplished by adjustments of the dosage or intensity of the treatment. The ultimate choice of methodology for establishing an adequate non-mycorrhizal control depends on the design of the particular experiments, the facilities available and the amount of soil requiring treatment

    Novel role for the innate immune receptor toll-like receptor 4 (TLR4) in the regulation of the wnt signaling pathway and photoreceptor apoptosis

    Get PDF
    Recent evidence has implicated innate immunity in regulating neuronal survival in the brain during stroke and other neurodegenerations. Photoreceptors are specialized light-detecting neurons in the retina that are essential for vision. In this study, we investigated the role of the innate immunity receptor TLR4 in photoreceptors. TLR4 activation by lipopolysaccharide (LPS) significantly reduced the survival of cultured mouse photoreceptors exposed to oxidative stress. With respect to mechanism, TLR4 suppressed Wnt signaling, decreased phosphorylation and activation of the Wnt receptor LRP6, and blocked the protective effect of the Wnt3a ligand. Paradoxically, TLR4 activation prior to oxidative injury protected photoreceptors, in a phenomenon known as preconditioning. Expression of TNFα and its receptors TNFR1 and TNFR2 decreased during preconditioning, and preconditioning was mimicked by TNFα antagonists, but was independent of Wnt signaling. Therefore, TLR4 is a novel regulator of photoreceptor survival that acts through the Wnt and TNFα pathways. © 2012 Yi et al

    A High Statistics Search for Electron-Neutrino --> Tau-Neutrino Oscillations

    Full text link
    We present new limits on nu_e to nu_tau and nu_e to nu_sterile oscillations by searching for electron neutrino dissappearance in the high-energy wide-band CCFR neutrino beam. Sensitivity to nu_tau appearance comes from tau decay modes in which a large fraction of the energy deposited is electromagnetic. The beam is composed primarily of muon neutrinos but this analysis uses the 2.3% electron neutrino component of the beam. Electron neutrino energies range from 30 to 600 GeV and flight lengths vary from 0.9 to 1.4 km. This limit improves the sensitivity of existing limits and obtains a lowest 90% confidence upper limit in sin**2(2*alpha) of 9.9 x 10**(-2) at delta-m**2 of 125 eV**2.Comment: submitted to Phys. Rev. D. Rapid Com

    Nuclear Structure Functions in the Large x Large Q^2 Kinematic Region in Neutrino Deep Inelastic Scattering

    Full text link
    Data from the CCFR E770 Neutrino Deep Inelastic Scattering (DIS) experiment at Fermilab contain events with large Bjorken x (x>0.7) and high momentum transfer (Q^2>50 (GeV/c)^2). A comparison of the data with a model based on no nuclear effects at large x, shows a significant excess of events in the data. Addition of Fermi gas motion of the nucleons in the nucleus to the model does not explain the excess. Adding a higher momentum tail due to the formation of ``quasi-deuterons'' makes some improvement. An exponentially falling F_2 \propto e^-s(x-x_0) at large x, predicted by ``multi-quark clusters'' and ``few-nucleon correlations'', can describe the data. A value of s=8.3 \pm 0.7(stat.)\pm 0.7(sys.) yields the best agreement with the data.Comment: 4 pages, 4 figures, 1 table. Sibmitted to PR

    Nutritional correlates of koala persistence in a low-density population

    Get PDF
    It is widely postulated that nutritional factors drive bottom-up, resource-based patterns in herbivore ecology and distribution. There is, however, much controversy over the roles of different plant constituents and how these influence individual herbivores and herbivore populations. The density of koala (Phascolarctos cinereus) populations varies widely and many attribute population trends to variation in the nutritional quality of the eucalypt leaves of their diet, but there is little evidence to support this hypothesis. We used a nested design that involved sampling of trees at two spatial scales to investigate how leaf chemistry influences free-living koalas from a low-density population in south east New South Wales, Australia. Using koala faecal pellets as a proxy for koala visitation to trees, we found an interaction between toxins and nutrients in leaves at a small spatial scale, whereby koalas preferred trees with leaves of higher concentrations of available nitrogen but lower concentrations of sideroxylonals (secondary metabolites found exclusively in eucalypts) compared to neighbouring trees of the same species. We argue that taxonomic and phenotypic diversity is likely to be important when foraging in habitats of low nutritional quality in providing diet choice to tradeoff nutrients and toxins and minimise movement costs. Our findings suggest that immediate nutritional concerns are an important priority of folivores in low-quality habitats and imply that nutritional limitations play an important role in constraining folivore populations. We show that, with a careful experimental design, it is possible to make inferences about populations of herbivores that exist at extremely low densities and thus achieve a better understanding about how plant composition influences herbivore ecology and persistence.IW and WF received a grant from New South Wales (NSW) Department of Environment, Climate Change & Water

    A measurement of alphas(Q2)alpha_s(Q^2) from the Gross-Llewellyn Smith Sum Rule

    Full text link
    We extract a set of values for the Gross-Llewellyn Smith sum rule at different values of 4-momentum transfer squared (Q2Q^{2}), by combining revised CCFR neutrino data with data from other neutrino deep-inelastic scattering experiments for 1<Q2<15GeV2/c21 < Q^2 < 15 GeV^2/c^2. A comparison with the order αs3\alpha^{3}_{s} theoretical predictions yields a determination of αs\alpha_{s} at the scale of the Z-boson mass of 0.114±.012.0090.114 \pm^{.009}_{.012}. This measurement provides a new and useful test of perturbative QCD at low Q2Q^2, because of the low uncertainties in the higher order calculations.Comment: 4 pages, 4 figure
    • …
    corecore