1,094 research outputs found

    Scallop swimming kinematics and muscle performance: modelling the effects of "within-animal" variation in temperature sensitivity

    Get PDF
    Escape behaviour was investigated in Queen scallops (Aequipecten opercularis) acclimated to 5, 10 or 15 degrees C and tested at their acclimation temperature. Scallops are active molluscs, able to escape from predators by jet-propelled swimming using a striated muscle working in opposition to an elastic hinge ligament. The first cycle of the escape response was recorded using high-speed video ( 250 Hz) and whole-animal velocity and acceleration determined. Muscle shortening velocity, force and power output were calculated using measurements of valve movement and jet area, and a simple biomechanical model. The average shortening speed of the adductor muscle had a Q(10) of 2.04, significantly reducing the duration of the jetting phase of the cycle with increased temperature. Muscle lengthening velocity and the overall duration of the clap cycle were changed little over the range 5 - 15 degrees C, as these parameters were controlled by the relatively temperature-insensitive, hinge ligament. Improvements in the average power output of the adductor muscle over the first clap cycle ( 222 vs. 139 W kg(-1) wet mass at 15 and 5 degrees C respectively) were not translated into proportional increases in overall swimming velocity, which was only 32% higher at 15 degrees C ( 0.37m s(-1)) than 5 degrees C (0.28 m s(-1))

    Kinetic Characterisation of a Single Chain Antibody against the Hormone Abscisic Acid: Comparison with Its Parental Monoclonal

    Get PDF
    A single-chain Fv fragment antibody (scFv) specific for the plant hormone abscisic acid (ABA) has been expressed in the bacterium Escherichia coli as a fusion protein. The kinetics of ABA binding have been measured using surface plasmon resonance spectrometry (BIAcore 2000) using surface and solution assays. Care was taken to calculate the concentration of active protein in each sample using initial rate measurements under conditions of partial mass transport limitation. The fusion product, parental monoclonal antibody and the free scFv all have low nanomolar affinity constants, but there is a lower dissociation rate constant for the parental monoclonal resulting in a three-fold greater affinity. Analogue specificity was tested and structure-activity binding preferences measured. The biologically-active (+)-ABA enantiomer is recognised with an affinity three orders of magnitude higher than the inactive (-)-ABA. Metabolites of ABA including phaseic acid, dihydrophaseic acid and deoxy-ABA have affinities over 100-fold lower than that for (+)-ABA. These properties of the scFv make it suitable as a sensor domain in bioreporters specific for the naturally occurring form of ABA

    Techniques for Arbuscular Mycorrhiza Inoculum Reduction

    Get PDF
    It is well established that arbuscular mycorrhizal (AM) fungi can play a significant role in sustainable crop production and environmental conservation. With the increasing awareness of the ecological significance of mycorrhizas and their diversity, research needs to be directed away from simple records of their occurrence or casual speculation of their function (Smith and Read 1997). Rather, the need is for empirical studies and investigations of the quantitative aspects of the distribution of different types and their contribution to the function of ecosystems. There is no such thing as a fungal effect or a plant effect, but there is an interaction between both symbionts. This results from the AM fungi and plant community size and structure, soil and climatic conditions, and the interplay between all these factors (Kahiluoto et al. 2000). Consequently, it is readily understood that it is the problems associated with methodology that limit our understanding of the functioning and effects of AM fungi within field communities. Given the ubiquous presence of AM fungi, a major constraint to the evaluation of the activity of AM colonisation has been the need to account for the indigenous soil native inoculum. This has to be controlled (i.e. reduced or eliminated) if we are to obtain a true control treatment for analysis of arbuscular mycorrhizas in natural substrates. There are various procedures possible for achieving such an objective, and the purpose of this chapter is to provide details of a number of techniques and present some evaluation of their advantages and disadvantages. Although there have been a large number of experiments to investigated the effectiveness of different sterilization procedures for reducing pathogenic soil fungi, little information is available on their impact on beneficial organisms such as AM fungi. Furthermore, some of the techniques have been shown to affect physical and chemical soil characteristics as well as eliminate soil microorganisms that can interfere with the development of mycorrhizas, and this creates difficulties in the interpretation of results simply in terms of possible mycorrhizal activity. An important subject is the differentiation of methods that involve sterilization from those focussed on indigenous inoculum reduction. Soil sterilization aims to destroy or eliminate microbial cells while maintaining the existing chemical and physical characteristics of the soil (Wolf and Skipper 1994). Consequently, it is often used for experiments focussed on specific AM fungi, or to establish a negative control in some other types of study. In contrast, the purpose of inoculum reduction techniques is to create a perturbation that will interfere with mycorrhizal formation, although not necessarily eliminating any component group within the inoculum. Such an approach allows the establishment of different degrees of mycorrhizal formation between treatments and the study of relative effects. Frequently the basic techniques used to achieve complete sterilization or just an inoculum reduction may be similar but the desired outcome is accomplished by adjustments of the dosage or intensity of the treatment. The ultimate choice of methodology for establishing an adequate non-mycorrhizal control depends on the design of the particular experiments, the facilities available and the amount of soil requiring treatment

    Quality gap of educational services in viewpoints of students in Hormozgan University of medical sciences

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Higher education is growing fast and every day it becomes more and more exposed to globalization processes. The aim of this study was to determine the quality gap of educational services by using a modified SERVQUAL instrument among students in Hormozgan University of Medical Sciences.</p> <p>Methods</p> <p>A cross-sectional study was carried out at Hormozgan University of Medical Sciences in 2007. In this study, a total of 300 students were selected randomly and asked to complete a questionnaire that was designed according to SERVQUAL methods. This questionnaire measured students' perceptions and expectations in five dimensions of service that consists of assurance, responsiveness, empathy, reliability and tangibles. The quality gap of educational services was determined based on differences between students' perceptions and expectations.</p> <p>Results</p> <p>The results demonstrated that in each of the five SERVQUAL dimensions, there was a negative quality gap. The least and the most negative quality gap means were in the reliability (-0.71) and responsiveness (-1.14) dimensions respectively. Also, there were significant differences between perceptions and expectations of students in all of the five SERVQUAL dimensions (p < 0.001).</p> <p>Conclusion</p> <p>Negative quality gaps mean students' expectations exceed their perceptions. Thus, improvements are needed across all five dimensions.</p

    A realist synthesis of randomised control trials involving use of community health workers for delivering child health interventions in low and middle income countries

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A key constraint to saturating coverage of interventions for reducing the burden of childhood illnesses in Low and Middle Income Countries (LMIC) is the lack of human resources. Community health workers (CHW) are potentially important actors in bridging this gap. Evidence exists on effectiveness of CHW in management of some childhood illnesses (IMCI). However, we need to know how and when this comes to be. We examine evidence from randomized control trials (RCT) on CHW interventions in IMCI in LMIC from a realist perspective with the aim to see if they can yield insight into the working of the interventions, when examined from a different perspective.</p> <p>Methods</p> <p>The realist approach involves educing the mechanisms through which an intervention produced an outcome in a particular context. 'Mechanisms' are reactions, triggered by the interaction of the intervention and a certain context, which lead to change. These are often only implicit and are actually hypothesized by the reviewer. This review is limited to unravelling these from the RCTs; it is thus a hypothesis generating exercise.</p> <p>Results</p> <p>Interventions to improve CHW performance included 'Skills based training of CHW', 'Supervision and referral support from public health services', 'Positioning of CHW in the community'. When interventions were applied in context of CHW programs embedded in local health services, with beneficiaries who valued services and had unmet needs, the interventions worked if following mechanisms were triggered: anticipation of being valued by the community; perception of improvement in social status; sense of relatedness with beneficiaries and public services; increase in self esteem; sense of self efficacy and enactive mastery of tasks; sense of credibility, legitimacy and assurance that there was a system for back-up support. Studies also showed that if context differed, even with similar interventions, negative mechanisms could be triggered, compromising CHW performance.</p> <p>Conclusion</p> <p>The aim of this review was to explore if RCTs could yield insight into the working of the interventions, when examined from a different, a realist perspective. We found that RCTs did yield some insight, but the hypotheses generated were very general and not well refined. These hypotheses need to be tested and refined in further studies.</p

    Variational Methods for Biomolecular Modeling

    Full text link
    Structure, function and dynamics of many biomolecular systems can be characterized by the energetic variational principle and the corresponding systems of partial differential equations (PDEs). This principle allows us to focus on the identification of essential energetic components, the optimal parametrization of energies, and the efficient computational implementation of energy variation or minimization. Given the fact that complex biomolecular systems are structurally non-uniform and their interactions occur through contact interfaces, their free energies are associated with various interfaces as well, such as solute-solvent interface, molecular binding interface, lipid domain interface, and membrane surfaces. This fact motivates the inclusion of interface geometry, particular its curvatures, to the parametrization of free energies. Applications of such interface geometry based energetic variational principles are illustrated through three concrete topics: the multiscale modeling of biomolecular electrostatics and solvation that includes the curvature energy of the molecular surface, the formation of microdomains on lipid membrane due to the geometric and molecular mechanics at the lipid interface, and the mean curvature driven protein localization on membrane surfaces. By further implicitly representing the interface using a phase field function over the entire domain, one can simulate the dynamics of the interface and the corresponding energy variation by evolving the phase field function, achieving significant reduction of the number of degrees of freedom and computational complexity. Strategies for improving the efficiency of computational implementations and for extending applications to coarse-graining or multiscale molecular simulations are outlined.Comment: 36 page

    Larger than Life: Humans' Nonverbal Status Cues Alter Perceived Size

    Get PDF
    Social dominance and physical size are closely linked. Nonverbal dominance displays in many non-human species are known to increase the displayer's apparent size. Humans also employ a variety of nonverbal cues that increase apparent status, but it is not yet known whether these cues function via a similar mechanism: by increasing the displayer's apparent size.We generated stimuli in which actors displayed high status, neutral, or low status cues that were drawn from the findings of a recent meta-analysis. We then conducted four studies that indicated that nonverbal cues that increase apparent status do so by increasing the perceived size of the displayer. Experiment 1 demonstrated that nonverbal status cues affect perceivers' judgments of physical size. The results of Experiment 2 showed that altering simple perceptual cues can affect judgments of both size and perceived status. Experiment 3 used objective measurements to demonstrate that status cues change targets' apparent size in the two-dimensional plane visible to a perceiver, and Experiment 4 showed that changes in perceived size mediate changes in perceived status, and that the cue most associated with this phenomenon is postural openness.We conclude that nonverbal cues associated with social dominance also affect the perceived size of the displayer. This suggests that certain nonverbal dominance cues in humans may function as they do in other species: by creating the appearance of changes in physical size

    Measurement of the Masses and Widths of the Sigma_c^++ and Sigma_c^0 Charmed Baryons

    Full text link
    Using data recorded by the CLEO II and CLEO II.V detector configurations at CESR, we report new measurements of the masses of the Sigma_c^{++} and Sigma_c^0 charmed baryons, and the first measurements of their intrinsic widths. We find M(Sigma_c^{++}) - M(Lambda_c^+) = 167.4 +- 0.1 +- 0.2 MeV, Gamma(Sigma_c^{++}) = 2.3 +- 0.2 +- 0.3 MeV, and M(Sigma_c^0) - M(Lambda_c^+) = 167.2 +- 0.1 +- 0.2 MeV, Gamma(Sigma_c^0) = 2.5 +- 0.2 +- 0.3 MeV, where the uncertainties are statistical and systematic, respectively.Comment: 9 pages postscript, also available through http://w4.lns.cornell.edu/public/CLNS, submitted to PRD, Rapid Communications. Reference [13] correcte

    Minimum sample size for external validation of a clinical prediction model with a binary outcome

    Get PDF
    In prediction model research, external validation is needed to examine an existing model's performance using data independent to that for model development. Current external validation studies often suffer from small sample sizes and consequently imprecise predictive performance estimates. To address this, we propose how to determine the minimum sample size needed for a new external validation study of a prediction model for a binary outcome. Our calculations aim to precisely estimate calibration (Observed/Expected and calibration slope), discrimination (C-statistic), and clinical utility (net benefit). For each measure, we propose closed-form and iterative solutions for calculating the minimum sample size required. These require specifying: (i) target SEs (confidence interval widths) for each estimate of interest, (ii) the anticipated outcome event proportion in the validation population, (iii) the prediction model's anticipated (mis)calibration and variance of linear predictor values in the validation population, and (iv) potential risk thresholds for clinical decision-making. The calculations can also be used to inform whether the sample size of an existing (already collected) dataset is adequate for external validation. We illustrate our proposal for external validation of a prediction model for mechanical heart valve failure with an expected outcome event proportion of 0.018. Calculations suggest at least 9835 participants (177 events) are required to precisely estimate the calibration and discrimination measures, with this number driven by the calibration slope criterion, which we anticipate will often be the case. Also, 6443 participants (116 events) are required to precisely estimate net benefit at a risk threshold of 8%. Software code is provided.</p
    corecore