611 research outputs found

    Short-pulse frequency stabilization of a MW-class ECRH gyrotron at W7-X for CTS diagnostic

    Get PDF
    At the Wendelstein 7-X stellarator, a 174 GHz Collective Thomson Scattering (CTS) diagnostic will be implemented. One of the 140 GHz Electron Cyclotron Resonance Heating (ECRH) gyrotrons will be operated at around 174 GHz in a higher cavity mode, using it as source for the CTS mm-wave probing beam. To prevent any damage to the CTS receiver, a notch filter cuts out the high-power gyrotron signal at the entrance of the receiver. The bandwidth of the gyrotron signal determines the notch filter bandwidth. First proof-of-principle experiments on frequency stabilization were conducted on W7-X ECRH gyrotrons employing Phase-Locked Loop techniques. The gyrotron output frequency was controlled with the accelerating voltage, which is applied between the anode and cathode of the gyrotron diode-type Magnetron Injection Gun. Frequency stabilization experiments with 10 ms pulses were conducted at the gyrotron nominal frequency of 140 GHz as well as at 174 GHz. It is concluded that the gyrotron frequency could be stabilized for at least 3 ms at 140 GHz and 8 ms at 174 GHz. In the frequency spectrum, a clear main peak of the gyrotron frequency at 140 GHz with a full -15 dB linewidth of below 500 Hz was achieved

    Microwave stray radiation losses in vacuum windows

    Get PDF
    Vacuum windows are required in magnetically confined fusion experiments to provide possibilities to observe the plasma in a wide range of electromagnetic wavelengths. The window disk consists of a dielectric, e.g. Fused Silica (SiO2_2), Sapphire or Chemically Vapourised Diamond (CVD). As electromagnetic waves pass through the disk, a fraction of the beam power is dissipated resulting in a temperature increase of the disk. In Electron Cyclotron Waves (ECW) heated plasmas the dissipation in the window disk can be very high. The computation of dielectric losses for a collimated beam with known incidence angle, polarisation and loss tangent (measure for the intrinsic dielectric loss) is well established. However, the dielectric losses in diagnostic windows mostly result from microwave stray radiation, which results from a modest, but inevitable, fraction of non-absorbed ECW. This fraction diffuses in the vessel by many reflections into rays with random k-vector and with random polarisation. In this work the thermal load on the window disk by microwave stray radiation is assessed. The load by a collimated beam is studied as a function of incidence angle and polarisation allowing to average over a distribution of incident rays. An experiment was commissioned measuring the loss tangent of a number of commercially available SiO2_2 disks at low power in an open resonator, and subsequently measuring the dielectric heating of these disks at high power stray radiation using the facility ’MISTRAL’ at Wendelstein-7X. The experimental results are compared to modelling and it is demonstrated that, in the parameter range considered, single-pass fractional absorption may be applied while taking a safety margin that arises from the minima and maxima due to multiple reflections

    Contrasting H-mode behaviour with fuelling and nitrogen seeding in the all-carbon and metallic versions of JET

    Get PDF
    An all-metal ITER-Like Wall (JET-ILW), consisting of beryllium in the main chamber and tungsten surfaces in the divertor, has now been installed in JET to pursue low retention of fuel species and to explore the impact on next-step-relevant plasmas. Its implementation has offered a unique opportunity to compare behaviour with that in the previous all-Carbon lining (JET-C), notably for high-triangularity Type I H-modes with impurity seeding. This technique is recognised to be necessary for power handling both in ITER and in JET at full performance. Contrasting results are reported for closely-matched deuterium-fuelling plus nitrogen-seeding scans in each JET environment. Attention is focused upon neutral-beam-heated plasmas with total input power 15­17MW at 2.65T, 2.5MA, q95 3.5 , average triangularity d 0.4 , elongation k 1.7 and gas inputs spanning ranges 0.75 FD 3.3 , 0 FD 4.7 (1022 electrons / s assuming full ionisation). JET-C cases also included 1­2MW of central ion-cyclotron-resonance-frequency heating, so far absent from JET-ILW pulses, with possible consequences for respective core sawtooth and impurity-concentration results.Preprint of Paper to be submitted for publication in Proceedings of the 40th EPS Conference on Plasma Physics, Espoo, Finland 1st July 2013 - 5th July 201
    • …
    corecore