7,489 research outputs found
Discrete Routh Reduction
This paper develops the theory of abelian Routh reduction for discrete
mechanical systems and applies it to the variational integration of mechanical
systems with abelian symmetry. The reduction of variational Runge-Kutta
discretizations is considered, as well as the extent to which symmetry
reduction and discretization commute. These reduced methods allow the direct
simulation of dynamical features such as relative equilibria and relative
periodic orbits that can be obscured or difficult to identify in the unreduced
dynamics. The methods are demonstrated for the dynamics of an Earth orbiting
satellite with a non-spherical correction, as well as the double
spherical pendulum. The problem is interesting because in the unreduced
picture, geometric phases inherent in the model and those due to numerical
discretization can be hard to distinguish, but this issue does not appear in
the reduced algorithm, where one can directly observe interesting dynamical
structures in the reduced phase space (the cotangent bundle of shape space), in
which the geometric phases have been removed. The main feature of the double
spherical pendulum example is that it has a nontrivial magnetic term in its
reduced symplectic form. Our method is still efficient as it can directly
handle the essential non-canonical nature of the symplectic structure. In
contrast, a traditional symplectic method for canonical systems could require
repeated coordinate changes if one is evoking Darboux' theorem to transform the
symplectic structure into canonical form, thereby incurring additional
computational cost. Our method allows one to design reduced symplectic
integrators in a natural way, despite the noncanonical nature of the symplectic
structure.Comment: 24 pages, 7 figures, numerous minor improvements, references added,
fixed typo
Generalized Hamiltonian mechanics
Our purpose is to generalize Hamiltonian mechanics t the case in which the energy function (Hamiltonian), H , is a distribution (generalized function) in the sense of Schwartz. We follow the same general program as in the smooth case. Familiarity with the smooth case is helpful, although we have striven to make the exposition self-contained, starting from calculus on manifold
Gauge Theory for Finite-Dimensional Dynamical Systems
Gauge theory is a well-established concept in quantum physics,
electrodynamics, and cosmology. This theory has recently proliferated into new
areas, such as mechanics and astrodynamics. In this paper, we discuss a few
applications of gauge theory in finite-dimensional dynamical systems with
implications to numerical integration of differential equations. We distinguish
between rescriptive and descriptive gauge symmetry. Rescriptive gauge symmetry
is, in essence, re-scaling of the independent variable, while descriptive gauge
symmetry is a Yang-Mills-like transformation of the velocity vector field,
adapted to finite-dimensional systems. We show that a simple gauge
transformation of multiple harmonic oscillators driven by chaotic processes can
render an apparently "disordered" flow into a regular dynamical process, and
that there exists a remarkable connection between gauge transformations and
reduction theory of ordinary differential equations. Throughout the discussion,
we demonstrate the main ideas by considering examples from diverse engineering
and scientific fields, including quantum mechanics, chemistry, rigid-body
dynamics and information theory
Routh reduction and the class of magnetic Lagrangian systems
In this paper, some new aspects related to Routh reduction of Lagrangian
systems with symmetry are discussed. The main result of this paper is the
introduction of a new concept of transformation that is applicable to systems
obtained after Routh reduction of Lagrangian systems with symmetry, so-called
magnetic Lagrangian systems. We use these transformations in order to show
that, under suitable conditions, the reduction with respect to a (full)
semi-direct product group is equivalent to the reduction with respect to an
Abelian normal subgroup. The results in this paper are closely related to the
more general theory of Routh reduction by stages.Comment: 23 page
Control for an Autonomous Bicycle
The control of nonholonomic and underactuated systems with symmetry is illustrated by the problem of controlling a bicycle. We derive a controller which, using steering and rear-wheel torque, causes a model of a riderless bicycle to recover its balance from a near fall as well as converge to a time parameterized path in the ground plane. Our construction utilizes new results for both the derivation of equations of motion for nonholonomic systems with symmetry, as well as the control of underactuated robotic systems
Some basic properties of infinite dimensional Hamiltonian systems
We consider some fundamental properties of infinite dimensional Hamiltonian systems,
both linear and nonlinear. For exemple, in the case of linear systems, we prove a symplectic
version of the teorem of M. Stone. In the general case we establish conservation of energy
and the moment function for system with symmetry. (The moment function was introduced
by B. Kostant and J .M. Souriau). For infinite dimensional systems these conservation
laws are more delicate than those for finite dimensional systems because we are dealing with
partial as opposed to ordinary differential equations
Controllability and stabilizability of distributed bilinear systems: Recent results and open problems
This paper describes recent results for controlling and stabilizing control systems of the form ú(t) = Au(t) + p(t) B(u(t)) where A is the infinitesimal generator C∞ semigroup
on a Banach space X, B' map from X into X, and p(t) is a real valued control. Application to a vibrating beam problem is given for illusstration of the theory
- …
