
ar
X

iv
:1

20
3.

33
02

v2
  [

m
at

h-
ph

] 
 8

 J
un

 2
01

2

Routh reduction and the class of magnetic Lagrangian

systems
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Abstract

In this paper, some new aspects related to Routh reduction of Lagrangian systems with
symmetry are discussed. The main result of this paper is the introduction of a new concept
of transformation that is applicable to systems obtained after Routh reduction of Lagrangian
systems with symmetry, so-called magnetic Lagrangian systems. We use these transforma-
tions in order to show that, under suitable conditions, the reduction with respect to a (full)
semi-direct product group is equivalent to the reduction with respect to an Abelian normal
subgroup. The results in this paper are closely related to the more general theory of Routh
reduction by stages.
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1 Introduction

Originally, Routh’s reduction procedure is a technique in classical mechanics applicable to La-
grangian systems for which the Lagrangian is independent of one or more coordinates, also called
ignorable or cyclic coordinates (see for instance [17]). The method consists in eliminating the
ignorable coordinates using a fixed value for the corresponding conserved momenta, provided
that a certain regularity condition for the Legendre transform holds.

Routh reduction, and its generalization to the case of non-Abelian symmetry groups, has gained
renewed attention in recent literature. For instance, in [9, 15] a geometric formulation of this
technique was given for Lagrangians of mechanical type (L = T − V ) that are invariant under
the action of an arbitrary Lie group. Geometric Routh reduction was subsequently extended to
arbitrary invariant Lagrangian systems [1, 6]. In all these treatments an essential ingredient is
that the original invariant Lagrangian satisfies a certain regularity condition with respect to the
Legendre transform. The situation where this condition can be relaxed is described in [10]. Routh
reduction can be seen as the Lagrangian analogue of (pre-)symplectic reduction for Hamiltonian
systems (see [8, 16]). This fact was in particular exploited in developing Routh reduction by
stages as a special case of symplectic reduction by stages [11, 12].

The dynamical system that is obtained after performing Routh reduction is represented by
Euler-Lagrange equations, not with respect to an ordinary Lagrangian but with respect to the
so-called Routhian. This is a system which is of “magnetic Lagrangian” type [11]. A magnetic
Lagrangian system is a system derived from a Lagrangian which does not depend on some of the
velocity coordinates and is subjected to a magnetic (or gyroscopic) force term, i.e. a force term
obtained from a closed 2-form. Although the Lagrangian function is singular in the sense that it
is independent of some velocities, due to the presence of this magnetic force term it may happen
that the resulting system will be regular in the sense that it admits a symplectic formulation and
that the equations of motion are of Hamiltonian type with respect to this symplectic form. We
will review some aspects of these magnetic Lagrangian systems in Section 2. For more details
we refer to [11]. It is important to keep in mind that every system obtained from a Lagrangian
system with symmetry after Routh reduction, is a magnetic Lagrangian system. Since ordinary
(regular) Lagrangian systems are trivially of magnetic Lagrangian type, with zero magnetic force
term, we could say that Routh reduction is a reduction procedure within the category of magnetic
Lagrangian systems.

In Section 3 we present a direct way to write down the Routh reduced equations for Lagrangian
systems whose configuration space is of the form Q = S × G, with G a Lie group with respect
to which the Lagrangian is invariant. By ‘direct’ we mean here that we do not have to compute
the curvature of a chosen connection involved in the reduction procedure. Locally any manifold
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Q with a free and proper G-action can be written as the product of G and S = Q/G, indicating
that the reduced equations we find are locally valid for any nontrivial action on Q. Our approach
differs from the one in [9, 15] in that instead of working with the ‘mechanical connection’, we use
the standard zero-curvature connection. As will be seen, this significantly reduces computations.
Moreover, we show that the reduced equations are tightly related to the symplectic structure of
the coadjoint orbits in g∗, the dual of the Lie algebra of G. As an example, we briefly discuss
the case of a rigid body with a rotor.

The paper then continues with the introduction of a particular type of transformation between
magnetic Lagrangian systems (Section 4). These transformations are diffeomorphisms between
spaces on which magnetic Lagrangian systems are defined and they can map the respective
dynamical systems into each other. This is subsequently applied in Section 5 to the Routh
reduction of a Lagrangian system with configuration space a product of a manifold with a semi-
direct product group G ⋉ V of a Lie group G and a linear space V . In this case, there are two
‘natural’ ways to apply Routh reduction: reducing with respect to the full symmetry group G⋉V
or with respect to the Abelian subgroup V . If the dual action of G on V ∗ is free, it follows from
Routh reduction by stages that there exists a symplectic diffeomorphism relating the symplectic
structures of both reduced systems. This symplectic diffeomorphism belongs to the class of
transformations between magnetic Lagrangian systems we have introduced. We finally treat the
case of Elroy’s beanie as an illustrative example.

Notations and background. For convenience we fix here some notations and we briefly recall
some definitions concerning Lie group actions and connections on fibre bundles.

First of all, a point of a tangent bundle TM will generally be denoted by vm, meaning that
vm ∈ TmM with m ∈ M . If coordinates on M are given by (x1, . . . , xn), corresponding bundle
coordinates on TM are written as (xi, vi) (for i = 1, . . . , n).

Given a Lie group G, we will denote its Lie algebra by g and the dual of its Lie algebra by g∗.
We will write exp for the exponential map exp : g → G. The adjoint action of G on g is denoted
by Ad and the coadjoint action on g∗, which is defined as the dual of the adjoint action, by Ad∗.
A left action of a Lie group G on a manifold M is denoted by ΦM : G ×M → M ; (g,m) 7→
ΦM (g,m) := ΦMg (m). We will also frequently write gm instead of ΦMg (m). A left action ΦM of
a Lie group on M induces an infinitesimal action at the Lie algebra level

φMm : g → TmM ; ξ 7→ d/dǫ|0(exp ǫξ)(m).

Given ξ ∈ g, we will often consider the corresponding fundamental vector field ξM on M , defined
pointwise as ξM (m) = φMm (ξ).

Throughout this paper we will mostly consider free and proper actions of a Lie group G on a
manifold M . This guarantees that the quotient manifold M/G can be endowed with a differen-
tiable structure such that the projection π : M → M/G is a principal fiber bundle (see [7, 12]).
Points in the manifold M/G are typically denoted [m]G, or simply [m] when there is no risk for
confusion. In carrying out Routh reduction, we have to make use of a connection on a principal
fiber bundle. A connection on a principal fiber bundle π : M → M/G is g-valued 1-form A on
M such that the following two conditions are satisfied:

1. it is G-equivariant, i.e. (ΦMg )∗A = Adg ◦ A for any g ∈ G;

2. for ξ ∈ g arbitrary, A(ξM ) = ξ.
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The kernel of A determines a left invariant distribution on M which is complementary to the
vertical distribution given by kerTπ. The former is referred as the horizontal distribution
spanned by the given connection. It is also true that any G-invariant distribution which is
complementary to the vertical distribution determines a connection form in the obvious way.
For each µ ∈ g∗, we define the 1-form Aµ on M by

Aµ(m)(vm) = 〈µ,A(m)(vm)〉,

with vm ∈ TmM .

Given two bundles fibred over the same base manifold π1 : P1 → Q and π2 : P2 → Q, the fibred
product is the bundle with base manifold Q and with total space

P1 ×Q P2 := {(p1, p2) ∈ P1 × P2 | π1(p1) = π2(p2)} .

2 Preliminaries on magnetic Lagrangian systems

A magnetic Lagrangian system is a Lagrangian system whose ‘configuration space’ is the total
space of a bundle ǫ : P → Q, and where the Lagrangian is independent of the velocities tangent
to the fibres of ǫ. Additionally, the system may be subjected to a magnetic force term. More
precisely, we have the following definition (see e.g. [11]):

Definition 1. A magnetic Lagrangian system consists of a triple (ǫ : P → Q,L,B) where
ǫ : P → Q is a fibre bundle, L is a smooth function on the fibred product TQ ×Q P and B
is a closed 2-form on P . We say that P is the configuration manifold of the system, L is the
Lagrangian and B is the magnetic 2-form.

Points inQ and P are usually denoted by q and p, respectively. Assuming dimQ = n and dimP =
n+ k, local coordinates on Q will be denoted by (q1, . . . , qn) and coordinates on P , adapted to
the fibration ǫ : P → Q, by (qi, pa), i = 1, . . . , n = dimQ, a = 1, . . . , k = dimP − dimQ.
The induced bundle coordinates on TQ ×Q P are then given by (qi, vi, pa), where (qi, vi) are
the coordinates of a point on TQ. The Lagrangian L is then locally expressed as a function of
(qi, vi, pa). In particular, we note that L does not depend on the velocities in the fibre coordinates
and, therefore, becomes singular when interpreted as a Lagrangian on the full tangent bundle
TP . The 2-form B, written in local coordinates, reads

B =
1

2
Bijdq

i ∧ dqj + Biadq
i ∧ dpa +

1

2
Babdp

a ∧ dpb .

Before proceeding, we fix some further notations.

Definition 2. Assume a magnetic Lagrangian system (ǫ : P → Q,L,B) is given.

1. The fibred product TQ×QP will be abbreviated by TPQ and a point in TPQ will be denoted
by (vq, p), where vq ∈ TqQ and p ∈ P is such that ǫ(p) = q. Similarly, T ∗

PQ denotes the
fibred product T ∗Q×Q P and (αq, p) represents an arbitrary point in T ∗

PQ, with αq ∈ T ∗
qQ

and ǫ(p) = q.

2. V ǫ denotes the distribution on P of tangent vectors vertical with respect to ǫ.

3. ǫ̂ : TP → TPQ is the projection fibred over P that maps vp ∈ TP onto (T ǫ(vp), p) ∈ TPQ.
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4. τ1 : TPQ→ TQ is the projection that maps (vq, p) ∈ TPQ onto vq ∈ TQ.

5. τ2 : TPQ→ P is the projection that maps (vq, p) ∈ TPQ onto p ∈ P.

6. π1 : T ∗

PQ→ T ∗Q is the projection that maps (αq, p) ∈ T ∗

PQ onto αq ∈ T ∗Q.

7. π2 : T ∗

PQ→ P is the projection that maps (αq, p) ∈ T ∗

PQ onto p ∈ P.

8. The Legendre transform corresponding to L is the map FL : TPQ→ T ∗

PQ sending (vq, p) ∈
TPQ into (αq, p) ∈ T ∗

PQ, where αq ∈ T ∗
qQ is uniquely determined by the relation

〈αq, wq〉 =
d

du

∣

∣

∣

∣

u=0

L(vq + uwq, p),

for arbitrary wq ∈ TqQ.

9. The function on TPQ defined by EL(vq, p) = 〈FL(vq, p), (vq, p)〉 − L(vq, p) is called the
energy of the magnetic Lagrangian system. (Here, the contraction of an element (αq, p) ∈
T ∗

PQ with (vq, p) ∈ TPQ is defined naturally as 〈(αq , p), (vq, p)〉 := 〈αq, vq〉).

10. Let ωQ = dθQ be the canonical symplectic form on T ∗Q. By means of the Legendre trans-
form, we can pull-back the closed 2-form π∗

1ωQ + π∗
2B on T ∗

PQ to a closed 2-form on TPQ

ΩL,B := FL∗(π∗

1ωQ + π∗

2B).

Let us now specify the kind of dynamical system we associate with a magnetic Lagrangian system.

Definition 3. A curve p(t) in P is called a solution of the magnetic Lagrangian system (ǫ : P →
Q,L,B) if the induced curve γ(t) = (q̇(t), p(t)) ∈ TPQ, with q(t) = ǫ(p(t)) for all t, satisfies the
equation

iγ̇(t)Ω
L,B(γ(t)) = −dEL(γ(t)).

Local expressions for the 2-form ΩL,B and the 1-form dEL read:

ΩL,B = d

(

∂L

∂vi

)

∧ dqi +
1

2
Bijdq

i ∧ dqj + Biadq
i ∧ dpa +

1

2
Babdp

a ∧ dpb,

dEL = vid

(

∂L

∂vi

)

+
∂L

∂vi
dvi − dL = vid

(

∂L

∂vi

)

−
∂L

∂qi
dqi −

∂L

∂pa
dpa.

With these coordinate expressions one can readily check that a curve p(t) = (qi(t), pa(t)) in P is
a solution of the magnetic Lagrangian system (ǫ : P → Q,L,B) iff it satisfies the following set
of mixed second and first order ordinary differential equations

d

dt

(

∂L

∂q̇i

)

−
∂L

∂qi
= Bij q̇

j + Biaṗ
a ,

−
∂L

∂pa
= −Biaq̇

i + Babṗ
b ,

for i = 1, . . . , n and a = 1, . . . , k. Remark that these equations are the standard Euler-Lagrange
equations for the Lagrangian ǫ̂∗L on TP subjected to a magnetic force term. Moreover, if P = Q
and if ǫ is the identity, the above definition includes the standard definition of a Lagrangian
system subjected to a magnetic force term. In this sense, the concept of a magnetic Lagrangian
systems extends the standard concept of Lagrangian systems. For the time being we will primarily
be interested in the type of magnetic Lagrangian systems called hyperregular.
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Definition 4. A magnetic Lagrangian system is called regular if the following two conditions
are satisfied:

1. The 2-form π∗
1ωQ + π∗

2B is symplectic;

2. FL is a local diffeomorphism.

If, in addition, FL is a global diffeomorphism, the magnetic Lagrangian system is called hyper-
regular.

From the local expression for the magnetic 2-form, the first of these conditions is equivalent to
detBab 6= 0 provided dimP > dimQ. A large supply of regular magnetic Lagrangians is provided
by the kind of magnetic Lagrangians which are inspired upon mechanical systems.

Definition 5. A magnetic Lagrangian system (ǫ : P → Q,L,B) is said to be of mechanical type
if L(vq, p) = 1

2 ≪ (vq, p), (vq, p) ≫τ2 −V (p) where ≪ ·, · ≫τ2 is a metric on the vector bundle
τ2 : TPQ→ P and V is a function on P .

For simplicity, we will assume from now on that all magnetic Lagrangians systems we consider
are hyperregular. The following proposition is a straightforward consequence of Definition 4.

Proposition 1. If a magnetic Lagrangian system (ǫ : P → Q,L,B) is hyperregular, the 2-form
ΩL,B = FL∗(π∗

1ωQ + π∗
2B) determines a symplectic structure on TPQ.

We conclude that a hyperregular magnetic Lagrangian system induces a symplectic structure
on TPQ and its dynamics is represented by the Hamiltonian vector field with respect to this
symplectic structure and with the energy function as Hamiltonian:

iXEL
ΩL,B = −dEL .

Clearly, each integral curve γ(t) of XEL
projects onto a solution p(t) of the magnetic Lagrangian

system.

Routh Reduction. We now recall how the concept of magnetic Lagrangian systems enters
the picture when dealing with Routh reduction of Lagrangian systems with symmetry. Our
treatment thereby follows the symplectic reduction point of view: we introduce the symplectic
structure on the tangent bundle TQ where the Lagrangian is defined, and use invariance of L
to get a reduced system by applying the symplectic reduction procedure (for a detailed account,
see [10, 16]).

Recall that a Lagrangian system is a pair (Q,L) where Q is the configuration manifold and
L is a smooth function on TQ. Given a hyperregular Lagrangian system (Q,L) (i.e. FL is a
global diffeomorphism) one can define a symplectic structure on TQ by using FL to pull back
the canonical symplectic form ωQ on T ∗Q. We denote it by ΩL, i.e. ΩL = (FL)∗ωQ, and it is
usually called the Poincaré-Cartan 2-form associated with L.

When a free and proper G-action ΦQ on the configuration manifold Q is given, a Lagrangian
system (Q,L) is said to be G-invariant if L is an invariant function with respect to the lifted
action of ΦQ to TQ. The momentum map associated with this action is the map JL : TQ→ g∗

defined as follows: for arbitrary vq ∈ TQ and ξ ∈ g,

〈JL(vq), ξ〉 = 〈FL(vq), ξQ(q)〉.

It is known that JL is equivariant in the sense that JL(TΦQg (vq)) = Ad∗g−1(JL(vq)), where Ad∗

is the coadjoint action of G on g∗. We now introduce a specific regularity condition on the
Lagrangian which will play an important role in the Routh reduction procedure.
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Definition 6. A G-invariant Lagrangian L is called G-regular if for every fixed vq ∈ TQ the
map g → g∗, ξ 7→ JL(vq + ξQ(q)) is a diffeomorphism.

Fix a regular value µ ∈ g∗ of the momentum map JL, and consider the submanifold J−1
L (µ) of

TQ with the natural embedding iµ : J−1
L (µ) → TQ. By equivariance of the momentum map

JL it follows directly that J−1
L (µ) is Gµ-invariant (where Gµ is the isotropy subgroup of µ).

Moreover, the restricted action of Gµ on J−1
L (µ) is free and proper, which provides a smooth

manifold structure on the quotient J−1
L (µ)/Gµ. Due to the Gµ-invariance of the map J−1

L (µ) →
TQ/Gµ

(Q/G), vq 7→ (Tπ(iµ(vq)), [q]Gµ
) it induces a map Πµ : J−1

L (µ)/Gµ → TQ/Gµ
(Q/G). The

following result immediately follows from a more general statement in [11] (Proposition 7).

Lemma 1. Let L be a G-invariant and G-regular Lagrangian. Then Πµ : J−1
L (µ)/Gµ →

TQ/Gµ
(Q/G) is a diffeomorphism.

Assume now we have chosen a principal connection A on the bundle π : Q → Q/G and, for a
given µ ∈ g∗, let Aµ be the corresponding 1-form on Q. Then, the 2-form dAµ is projectable to
a 2-form Bµ on Q/Gµ, for it is Gµ-invariant and it vanishes on vector fields tangent to the fibres
of the bundle Q → Q/Gµ. We introduce the following projection maps, with notations which
are more or less in agreement with those from Definition 2:

π1 : T ∗

Q/Gµ
(Q/G) → T ∗(Q/G) , τ2 : TQ/Gµ

(Q/G) → Q/Gµ .

Moreover, we write ωQ/G for the canonical 2-form on T ∗(Q/G).

Consider again the G-invariant and G-regular Lagrangian L : TQ→ R and let µ ∈ g∗ be a fixed
regular value of the momentum map JL. Define the function L − Âµ, with Âµ : TQ→ R, vq 7→
Aµ(q)(vq). This function is Gµ-invariant and, in particular, its restriction to J−1

L (µ) is reducible
to a function on the quotient J−1

L (µ)/Gµ. Using the diffeomorphism Πµ, we can consider the
corresponding function on TQ/Gµ

(Q/G): this the so-called Routhian, denoted as Rµ. Hence,

denoting the projection J−1
L (µ) → J−1

L (µ)/Gµ by πµ, we have

(L− Âµ)|J−1
L (µ) = (Πµ ◦ πµ)∗Rµ .

Then we state the following result (cf. [10], Theorem 7):

Proposition 2 (Routh reduction). Let L be a hyperregular G-invariant, G-regular Lagrangian
with configuration space Q, and let µ ∈ g∗ denote a regular value of the momentum map JL.
Then, the magnetic Lagrangian system (Q/Gµ → Q/G,Rµ,Bµ), as constructed above, has the
property that every solution of the original Euler-Lagrange equations corresponding to the mo-
mentum value µ projects onto a solution of (Q/Gµ → Q/G,Rµ,Bµ). Conversely, every solution
in Q/Gµ of (Q/Gµ → Q/G,Rµ,Bµ) is the projection of a solution to the Euler-Lagrange equa-
tions for L with momentum µ.

Thus, systems of magnetic Lagrangian type appear naturally when reducing dynamics of invari-
ant Lagrangian systems according to the Routh procedure.

Remark 1. As mentioned above, throughout this paper we only consider magnetic Lagrangian
systems that are hyperregular. This is the standard case, where one has Routhian reduction as
a special instance of symplectic reduction. However, most of the results here can be adapted to
the presymplectic setting by relating Routh reduction to presymplectic, instead of symplectic,
reduction (see [8]).
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3 Routh reduction on product manifolds

3.1 General theory

In this section we describe Routh reduction for Lagrangian systems whose configuration manifold
is of the form Q = S ×G and the Lagrangian L is defined on TQ = TS × TG. There is a left
action of G on Q given by ΦQg′(s, g) = (s, Lg′g) = (s, g′g), with Lg′ left multiplication on G by

g′. The lifted action ΦTQ on TQ has the form ΦTQ : G × TQ; (g′, (vs, vg)) 7→ (vs, g
′vg), where

g′vg is a shorthand notation for TLg′(vg). (Similarly, we will write vgg
′ for TRg′(vg), with Rg′

right translation).

The left identification. We use the left identification of TG with G× g, i.e. vg 7→ (g, ξ) with
ξ = g−1vg ∈ g. The tangent bundle TQ = TS × TG is then isomorphic with TS ×G × g. The
lifted action ΦTQ on TQ corresponds to left multiplication in the middle factor of TS ×G × g:
if (vs, vg) 7→ (vs, g, ξ) then ΦTQg′ (vs, vg) 7→ (vs, g

′g, ξ). With this left identification in mind, the
fundamental vector field ξQ corresponding to ξ ∈ g takes on the form ξQ(s, g) = (0s, g, Adg−1ξ) ∈
TS ×G× g.

If the given Lagrangian L is invariant with respect to the lifted action ΦTQ, i.e. L(vs, gξ) =
L(vs, g

′ξ) for any g, g′ ∈ G, the corresponding expression for L on TS×G×g becomes independent
of G. An invariant function L determines a function ℓ on TS × g:

ℓ(vs, ξ) := L(vs, gξ).

The purpose now is to express Routh reduction of the G-invariant Lagrangian system (Q =
S×G,L) in terms of the function ℓ. It turns out that in this case we can write down an explicit
form for the reduced equations of motion.

The momentum map. We recall the definition of the momentum map JL, evaluated at
(vs, gξ) ∈ TQ = TS × TG, and we substitute ℓ(vs, ξ) for L(vs, gξ):

〈JL(vs, gξ), η〉 =
d

dǫ

∣

∣

∣

∣

ǫ=0

L
(

vs, g(ξ + ǫAdg−1η)
)

=
d

dǫ

∣

∣

∣

∣

ǫ=0

ℓ(vs, ξ + ǫAdg−1η)

= 〈F2ℓ(vs, ξ), Adg−1η〉 ,

for all η ∈ g, and where F2ℓ : TS × g → g∗ is defined by the relation

〈F2ℓ(vs, ξ), τ〉 =
d

dǫ

∣

∣

∣

∣

ǫ=0

ℓ(vs, ξ + ǫτ), for all τ ∈ g .

Consequently, we conclude from the above that

JL(vs, gξ) = Ad∗g−1F2ℓ(vs, ξ) .

For every µ ∈ g∗ the equation JL(vs, gξ) = µ can be equivalently written as F2ℓ(vs, ξ) = Ad∗gµ.
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G-regularity. Next, we investigate the G-regularity of L. Recall that this is in fact a condition
on JL: for every g ∈ G, ξ ∈ g, vs ∈ TS and ν ∈ g∗, there exists a unique η ∈ g such that

JL(vs, gξ + gη) = ν.

Using the foregoing result this is equivalent to F2ℓ(vs, ξ + η) = Ad∗gν. In particular, it follows
that G-regularity of L is equivalent here to the condition that the map F2ℓ(vs, ·) : g → g∗ is
invertible. Denote the inverse map by χ(vs) : g∗ → g, where χ(vs) depends smoothly on the

‘parameter’ vs ∈ TS. For later use we define χ
(vs)
µ to be the restriction of χ(vs) to the co-adjoint

orbit Oµ of some µ ∈ g∗.

The connection 1-form. The standard connection on Q = S×G regarded as a G-bundle over
S is A(vs, vg) = vgg

−1 ∈ g. This is in fact the trivial extension to S × G of the canonical con-
nection on G associated to the left multiplication. The corresponding map from TS×G×g → g

is (vs, gξ) 7→ A(vs, gξ) = Adgξ. For A to be a principal connection it should satisfy two condi-
tions: (1) when contracted with a fundamental vector field it should provide the corresponding
Lie algebra element, and (2) it should be equivariant. Using again the left identification, these
conditions are easily verified:

1. A(ξQ(s, g)) = ξ for ξ ∈ g arbitrary. Indeed, from ξQ(s, g) = (0s, gAdg−1ξ), it follows that
A(0s, gAdg−1ξ) = Adg(Adg−1ξ) = ξ.

2. A is equivariant if A(vs, g
′gξ) = Adg′A(gξ) for all g′, g ∈ G and ξ ∈ g. The left-hand side

of this equality becomes A(vs, g
′gξ) = Adg′gξ = Adg′Adgξ, which is precisely equal to the

right-hand side.

The horizontal distribution for this connection is the subbundle kerA = TS × 0G of TQ.

Next, for µ ∈ g∗ we consider the 1-form Aµ on S × G. Evaluating it on a horizontal tangent
vector (vs, 0g) and on a vertical tangent vector (0s, gξ) at a point (s, g) we find, respectively,
Aµ(vs, 0g) = 0 and Aµ(0s, gξ) = 〈µ,Adgξ〉. Now, we can compute its exterior derivative dAµ by
evaluating it on two horizontal vector fields, on two vertical vector fields and on a horizontal and
vertical vector field, respectively. Using Cartan’s formula for the exterior derivative and taking
into account the G-equivariance of the connection, one obtains after a routine calculation that

dAµ(s, g)
(

(vs, gξ), (ws, gξ
′)
)

= 〈Ad∗gµ, [ξ, ξ
′]〉 .

Computation of the 2-form Bµ. We now reduce the 2-form dAµ to Q/Gµ = S × G/Gµ.
Recall that G/Gµ is diffeomorphic to Oµ, with diffeomorphism defined by G/Gµ → Oµ, [g]Gµ

=
Gµg → Ad∗gµ. The tangent space to Oµ at some ν ∈ Oµ is given by (cf. [14, section 14.2])

TνOµ = {ad∗ξν | ξ ∈ g} .

Define the 2-form Bµ on S ×Oµ by the following prescription:

Bµ(s, ν)
(

(vs, ad
∗

ξν), (ws, ad
∗

ξ′ν)
)

= 〈ν, [ξ, ξ′]〉 .

One can verify that this is a closed 2-form. In fact, Bµ is the (trivial) extension to S×Oµ of the
standard Kostant-Kirillov-Souriau symplectic form ω+ on Oµ (see [14, section 14.2]). Using the
above formula for dAµ, one easily verifies that Bµ is the projection of dAµ on S ×Oµ.
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Routh reduction. Since in the case under consideration we have that J−1
L (µ)/Gµ ∼= TS ×

Oµ
∼= TS×Oµ

S and, hence, the map Πµ from Lemma 1 becomes the identity, we find the Routhian

Rµ by taking the restriction of ℓ − Âµ to J−1
L (µ) and projecting it onto J−1

L (µ)/Gµ. The
expression for Rµ therefore reads

Rµ(vs, ν) = (ℓ(vs, ξ) − 〈ν, ξ〉) |
ξ=χ

(vs)
µ (ν)

,

where ν = Ad∗gµ ∈ Oµ.

The local equations of motion. The equations of motion for the magnetic Lagrangian system
(S ×Oµ → S,Rµ,Bµ) can be split into two parts: the part describing the evolution on TS and
the part describing the evolution on Oµ. We start with the latter.

Let ea denote a basis for g∗ and let ν̇′ = ν̇′ae
a be an arbitrary tangent vector to Oµ:

−〈dERµ(vs, ν), (0vs , ν̇
′)〉 =

∂Rµ

∂νa
(vs, ν)ν̇′a

=

〈

F2ℓ(vs, χ
(vs)(ν)),

∂χ(vs)

∂νa
(ν)ν̇′a

〉

− ν̇′a
(

χ(vs)(ν)
)a

−

〈

ν,
∂χ(vs)

∂νa
(ν)ν̇′a

〉

= −〈ν̇′, χ(vs)(ν)〉.

Therefore, the reduced equation of motion is

Bµ(ν)(ν̇, ν̇′) = −〈ν̇′, χ(vs)
µ (ν)〉

with ν̇′ arbitrary in TOµ. We conclude that one component of the Euler-Lagrange equation is
precisely ν̇ = ad∗

χ
(vs)
µ (ν)

ν. The component in T ∗S has the structure of standard Euler-Lagrange

equations: if (xi) is a coordinate system on S, then the equations of motion are

d

dt

(

∂Rµ

∂ẋi
(xi, ẋi, ν)

)

−
∂Rµ

∂xi
(xi, ẋi, ν) = 0.

Summarizing, we have proved the following result:

Theorem 1. Let ℓ denote the restriction to TS × g of a left G-invariant Lagrangian L on
T (S ×G) and let F2ℓ : TS × g → g∗ denote the fibre derivative w.r.t. the second argument. Fix
an element µ in g∗ and assume that there exists a map χ(vs) : g∗ → g which smoothly depends
on vs ∈ TS, such that F2ℓ(vs, χ

(vs)(ν)) ≡ ν for arbitrary (vs, ν) ∈ TS × g∗. Then, the reduced
system is the magnetic Lagrangian system (S×Oµ → S,Rµ,Bµ) where the 2-form Bµ on S×Oµ

and the Routhian Rµ on TS ×Oµ are given by, respectively,

Bµ(s, ν)
(

(vs, ad
∗

ξν), (ws, ad
∗

ξ′ν)
)

= 〈ν, [ξ, ξ′]〉 ,

and
Rµ(vs, ν) =

(

ℓ(vs, ξ) − 〈ν, ξ〉
)

ξ=χ
(vs)
µ (ν)

.
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(Here, χ
(vs)
µ is the restriction of χ(vs) to the coadjoint orbit Oµ). In a local coordinate chart (xi)

on S, the equations of motion for the reduced system are a system of coupled first and second
order differential equations:











ν̇ = ad∗
χ
(vs)
µ (ν)

ν,

d

dt

(

∂Rµ

∂ẋi
(xi, ẋi, ν)

)

−
∂Rµ

∂xi
(xi, ẋi, ν) = 0.

(1)

A similar result holds in case we are dealing with a Lagrangian on Q = S × G which is right
invariant, i.e. which is invariant under the lifted action of ΨQ : G×Q→ Q, (g′, (s, g)) 7→ (s, gg′).
Given the appropriate function ℓ, the reduced equation of motion in this case will slightly differ
from those obtained above: the component along Oµ becomes ν̇ = −ad∗

χ
(vs)
µ (ν)

ν.

3.2 Example: The rigid body with a rotor

We consider a rigid body with a single rotor along the third principal axis of the body. This
example is taken from [2]. The configuration space of this system is Q = S1 × SO(3), where
SO(3) is the configuration space of the rigid body and S1 measures the angle of the rotor relative
to the body frame which we denote by x. In the body frame of the principal inertia axes, the
(reduced) Lagrangian ℓ : TS1 × so(3) → R has the following expression:

ℓ(x, ẋ, ω) =
1

2
(ωIω + (ω + α)J(ω + α)) ,

where I and J are the inertia tensors corresponding to the rigid body and the rotor, respectively,
ω = (ω1, ω2, ω3) denotes the angular velocity of the body and α := (0, 0, ẋ) corresponds to the
angular velocity of the rotor, both in the body frame. Introducing the quantities λi = Ii + Ji,
i = 1, 2, 3, the Lagrangian becomes explicitly

ℓ(x, ẋ, ω) =
1

2
(λ1ω

2
1 + λ2ω

2
2 + λ3ω

2
3 + J3ẋ

2) + J3ẋω3.

The map F2ℓ(x, ẋ, ·) : R3(∼= so(3)) → R3(∼= so∗(3)) is given by

F2ℓ(ẋ, ω) = (λ1ω1, λ2ω2, λ3ω3 + J3ẋ),

and its inverse equals

χ(x,ẋ)(m) =

(

1

λ1
m1,

1

λ2
m2,

1

λ3
(m3 − J3ẋ)

)

,

where, in the notations of the previous section, m = (m1,m2,m3) ∈ R3 ∼= so∗(3) corresponds
to ν and (x, ẋ) corresponds to vs. For the actual computation of the Routhian, we use the
property that for Lagrangians of mechanical type with potential energy V (s), the Routhian can
be computed from the following identity [17]:

2
(

Rµ(vs, ν) + V (s)
)

= (〈F1ℓ(vs, ξ), vs〉 − 〈F2ℓ(vs, ξ), ξ〉)|ξ=χ(vs)
µ (vs,ν)

.
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Using the above expression, the Routhian is obtained in a straightforward way:

Rm0(x, ẋ,m) =
1

2

(

(J3ẋ
2 + J3ẋω3) − λ1ω

2
1 − λ2ω

2
2 − ω3(λ3ω3 + J3ẋ)

)
∣

∣

ω=χ
(x,ẋ)
m0

(m)

=
1

2

(

J3ẋ
2

(

1 −
J3
λ3

)

−
m2

1

λ1
−
m2

2

λ2
−
m2

3

λ3

)

+
J3
λ3
ẋm3

=
1

2

(

J3I3
λ3

ẋ2 −
m2

1

λ1
−
m2

2

λ2
−
m2

3

λ3

)

+
J3
λ3
ẋm3.

Note that the difference with the Routhian obtained in [9], which was computed using the
mechanical connection, is the appearance of the product term ẋm3. The reduced equations on

so∗(3) read ṁ = ad∗
χ
(x,ẋ)
m0

(m)
m = m × χ

(x,ẋ)
m0 (m). Finally, the full reduced set of equations of

motion corresponding to Rm0 read:

ṁ1 =

(

1

λ3
−

1

λ2

)

m2m3 −
m2J3
λ3

ẋ, ṁ2 =

(

1

λ1
−

1

λ3

)

m1m3 +
m1J3
λ3

ẋ,

ṁ3 =

(

1

λ2
−

1

λ1

)

m1m2, I3ẍ = −ṁ3.

Remark 2. In [5] the previous example is also treated in the context of controlled Lagrangians
(see also [3, 4, 18]). It would be of interest to investigate in detail the connections between the
two approaches.

4 Transformations between magnetic Lagrangian systems

We now introduce a particular type of transformations relating two magnetic Lagrangian systems.
This can be seen as a generalization of the concept of point transformations in Lagrangian
mechanics and is inspired upon the techniques encountered in Routh reduction. It allows one
to transform a magnetic Lagrangian system into a new magnetic Lagrangian system with an
enlarged configuration space P , but with a greater number of ‘constraints’ in order to compensate
for the raise in degrees of freedom.

4.1 Compatible transformations

Definition 7. Let ǫ(1) : P1 → Q1 and ǫ(2) : P2 → Q2 be two fiber bundles. If F : P1 → P2 and
f : Q2 → Q1 are two surjective submersions we say that the pair (F, f) forms a transformation
pair between both bundles if the following equality holds:

f ◦ ǫ(2) ◦ F = ǫ(1),

and all the arrows in Figure 1 represent fiber bundles.

Putting dimQi = ni and dimPi = ni+ ki for i = 1, 2, it immediately follows from this definition
that n1+k1 ≥ n2 +k2 and n1 ≤ n2, from which we deduce that the fiber dimensions must satisfy
k1 ≥ k2.

A transformation pair (F, f) determines a relation between the points of TP1Q1 and TP2Q2.
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P1 P2

Q1 Q2

F

ǫ(1)

f

ǫ(2)

Figure 1: Transformation pair

Definition 8. Given a transformation pair (F, f), then two points (vqi , pi) ∈ TPi
Qi, i = 1, 2 are

(F, f)-compatible if F (p1) = p2 and Tf(vq2) = vq1 .

We denote by V f(⊂ TQ2) the subbundle of f -vertical tangent vectors to Q2 and its dual by
V ∗f .

Suppose a transformation pair is given between the bundles ǫ(1) and ǫ(2). The projections of the

fibred product TPi
Qi onto TQi and Pi will be denoted by τ

(i)
1 and τ

(i)
2 , respectively, and the

projections of T ∗

Pi
Qi onto T ∗Qi and Pi by π

(i)
1 and π

(i)
2 , respectively, for i = 1, 2.

Definition 9. A smooth mapping ψ : TP1Q1 → TP2Q2 is compatible with the transformation pair

(F, f) if the following conditions are verified: (i) Tf ◦ τ
(2)
1 ◦ψ = τ

(1)
1 , and (ii) τ

(2)
2 ◦ψ = F ◦ τ

(1)
2 .

It is easily verified that a map ψ is compatible with (F, f) iff the image of a point and the point
itself are (F, f)-compatible. In particular this implies that a compatible transformation ψ makes
the diagrams in Figure 2 commute. It is worth deriving a coordinate expression for compatible

TP1Q1 TP2Q2

TQ1 TQ2

TP1Q1 TP2Q2

P1 P2

ψ

τ
(1)
1

Tf

τ
(2)
1

ψ

τ
(2)
2τ

(1)
2

F

Figure 2: A diagram for (F, f)-compatible transformations.

transformations. We choose coordinate charts that are adapted to the fibrations, i.e. starting
from coordinates (qi) on Q1, consider coordinates (qi, q̄a) on Q2 adapted to f . We denote the
ǫ(2) adapted coordinates on P2 by (qi, q̄a, p̄α) and, finally, (qi, q̄a, p̄α, pγ) on P1 adapted to F . A
(F, f)-compatible transformation then assumes the form:

ψ(qi, q̇i, q̄a, p̄α, pγ) = (qi, q̄a, q̇i, ψa(qi, q̇i, q̄a, p̄α, pγ), p̄α),

with the only non-trivial components in velocities vertical to f . Remark that if a compatible
transformation is a diffeomorphism, then for every p2 ∈ P2, the fibre F−1(p2) is diffeomorphic
to Vq2f , where q2 = ǫ(2)(p2). This assumption in particular implies that 2n1 +k1 = 2n2 +k2, i.e.

dimTP1Q1 = dimTP2Q2.

Remark 3. We already pointed out that an ordinary Lagrangian system is a special instance
of a magnetic Lagrangian system with P ≡ Q and TPQ ≡ TQ. Consider a point transformation
between Q2 and Q1, i.e., a diffeomorphism f : Q2 → Q1. Then the pair (F = f−1, f) is a
transformation pair and the tangent lift of f−1, i.e. ψ = Tf−1, is a compatible transformation.
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4.2 A special class of compatible transformations

We now proceed with the case where in addition to a transformation pair (F, f) between ǫ(1)

and ǫ(2), a hyperregular magnetic Lagrangian system (ǫ(2), L2,B2) is given. It is our purpose
to construct a class of (F, f)-compatible transformations by means of the Lagrangian L2 such
that, under suitable regularity conditions: (1) it is a diffeomorphism between TP1Q1 and TP2Q2,
and (2) it pulls-back the Hamiltonian vector field XEL2

on TP2Q2 to a vector field on TP1Q1

which is the Hamiltonian vector field associated to a new magnetic Lagrangian system on ǫ(1).
The main theorem of this section then relates the symplectic structures and the Hamiltonian
dynamics associated to the magnetic Lagrangian systems on ǫ(1) and ǫ(2). The construction of
the (F, f)-compatible transformation consists of three steps.

Step 1. Consider the map αL2 : TP2Q2 → V ∗f which is defined as π
(2)
1 ◦ FL2 : TP2Q2 → T ∗Q2

composed with the projection of T ∗Q2 onto V ∗f .

Definition 10. Given a transformation pair (F, f) between ǫ(1) and ǫ(2) and a Lagrangian system

(ǫ(2), L2,B2). The Lagrangian L2 is f -regular if for any given (vq2 , p2) ∈ TP2Q2 the map α
(vq2 ,p2)

L2
:

Vq2f → V ∗
q2f, wq2 7→ αL2(vq2 + wq2 , p2) is a diffeomorphism.

Step 2. Fix any surjective submersion β : P1 → V ∗f satisfying the regularity condition that

β|F−1(p2) : F−1(p2) → V ∗
q2f is a diffeomorphism for each p2 ∈ P2, with ǫ(2)(p2) = q2. For this to

hold, the dimension of the fibres of f should be equal to the dimension of the fibres of F which
is necessary for a (F, f)-compatible transformation to be a diffeomorphism.

Step 3. We now define a map ψL2,β from TP1Q1 to TP2Q2 associated to a f -regular Lagrangian
L2 and a fixed β as in the previous step. Let (vq1 , p1) be an arbitrary point in TP1Q1 and let
(vq2 , p2) ∈ TP2Q2 be compatible with it (such a point always exists). Due to the f -regularity

of L2, there is a unique tangent vector wq2 ∈ Vq2f that satisfies α
(vq2 ,p2)

L2
(wq2 ) = β(p1), or

alternatively

π
(2)
1

(

FL2(vq2 + wq2 , p2)
)

|V f = β(p1).

We take the point (vq2 + wq2 , p2) as the image of (vq1 , p1) under ψL2,β. Because (vq2 , p2) is
compatible with (vq1 , p1) and because L2 is f -regular, the construction is independent of the
choice of vq2 . If β satisfies the regularity condition from step 2, the map ψL2,β admits an inverse
and is a diffeomorphism. The following proposition summarizes the above.

Proposition 3. Let L2 be f -regular and β : P1 → V ∗f be arbitrary. Then the map ψL2,β :
TP1Q1 → TP2Q2 constructed above is uniquely determined from the two conditions:

1. ψL2,β is a (F, f)-compatible transformation;

2. π
(2)
1

(

FL2(ψL2,β(vq1 , p1))
)

|V f = β(p1) for arbitrary (vq1 , p1) ∈ TP1Q1.

If β satisfies the regularity condition from Step 2, then ψL2,β is a diffeomorphism.

A (F, f)-compatible transformation of the form ψL2,β can be used to pull-back the symplectic 2-
form and the energy of the magnetic Lagrangian system (ǫ(2), L2,B2) to the manifold TP1Q1. We
show in Theorem 2 that a magnetic Lagrangian system on ǫ(1) exists whose associated symplectic
2-form is precisely ψ∗

L2,β
ΩL2,B2 and whose energy is ψ∗

L2,β
EL2 .
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For the definition of this magnetic Lagrangian system on ǫ(1), we consider a connection A on the
bundle f : Q2 → Q1. Recall that A may be represented as a V f -valued 1-form on Q2, satisfying
A(vq2 ) = vq2 , for all vq2 ∈ V f . It induces an splitting TQ2 = Hf ⊕V f , where Hf = kerA is the
horizontal subbundle of TQ2 defined by A. It is standard to denote the horizontal and vertical
components of a tangent vector vq2 by vHq2 and vVq2 = A(vq2 ) respectively.

We will further use the notation AP1 to denote the V f -valued 1-form on P1 induced by A, i.e.
the vertical part of the projection of a tangent vector to P1 onto Q2 via the tangent map of
ǫ(2) ◦ F . Contraction of β and AP1 gives rise to a 1-form on P1, namely

〈β,AP1〉(p1) = 〈β(p1),AP1(p1)〉 ∈ T ∗

p1P1 .

Finally, we denote the TQ2-component of the transformation ψL2,β : TP1Q1 → TP2Q2, i.e. the

projection τ
(2)
1 ◦ ψL2,β, by ψTQ2

L2,β
.

Then we can prove the following important result.

Theorem 2. Let (F, f) be a transformation pair between ǫ(1) : P1 → Q1 and ǫ(2) : P2 → Q2 and
let (ǫ(2), L2,B2) be a magnetic Lagrangian systems such that L2 is f -regular. Fix a map β as in
Step 2 and let ψL2,β : TP1Q1 → TP2Q2 be the (F, f)-compatible diffeomorphism. Consider the
magnetic Lagrangian system (ǫ(1), L1,B1) defined by

1. L1(vq1 , p1) =
(

ψ∗

L2,β
L2

)

(vq1 , p1) − 〈β(p1),A(ψTQ2

L2,β
(vq1 , p1))〉;

2. B1 = F ∗B2 + d (〈β,AP1〉).

Then ψL2,β is a symplectomorphism between the two symplectic structures associated with the
two magnetic Lagrangian systems (ǫ(1) : P1 → Q1, L1,B1) and (ǫ(2) : P2 → Q2, L2,B2), and the
corresponding Hamiltonian vector fields XEL1

and XEL2
are ψL2,β-related.

Proof. The transformation pair (F, f) induces a chain of bundle structures:

P1
F
→ P2

ǫ(2)
→ Q2

f
→ Q1.

As before, we choose coordinate charts that are adapted to these fibrations. The map ψL2,β

has only nontrivial components in ˙̄qa = ψaL2,β
(q, q̄, q̇, p̄, p). The map β in coordinates reads

β(q, q̄, p̄, p) = βa(q, q̄, p̄, p)dq̄a and Γai (q, q̄) denote the connection coefficients of A, i.e.

A = (dq̄a + Γai dq
i) ⊗

∂

∂q̄a
,

and the vertical component of vq2 = (qi, q̄a, q̇i, ˙̄qa) at q2 = (qi, q̄a) is vVq2 = (qi, q̄a, 0, ˙̄qa +

Γaj (q, q̄)q̇j).

From the definition of ψL2,β we have the following identities:

∂L2

∂ ˙̄qa
(q, q̄, q̇, ψL2,β(q, q̇, q̄, p̄, p), p̄) = βa(q, q̄, p̄, p).

The Lagrangian L1 and the magnetic form B1 are then written as:

L1(q, q̄, q̇, p̄, p) = L2(q, q̄, q̇, ψL2,β(q, q̄, q̇, p̄, p), p̄) − βa(q, q̄, p̄, p)
(

ψaL2,β(q, q̄, q̇, p̄, p) + Γai (q, q̄)q̇i
)

,

B1 = F ∗B2 + d

(

βa(q, q̄, p̄, p)(dq̄a + Γai (q, q̄)dqi)

)

.
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The fact that ψL2,β is a symplectic diffeomorphism follows from a straightforward coordinate
computation:

ψ∗

L2,β(ΩL2,B2) = ψ∗

L2,β

(

d

(

∂L2

∂q̇i

)

∧ dqi + d

(

∂L2

∂ ˙̄qa

)

∧ dq̄a + B2

)

= d

(

∂L1

∂q̇i

)

∧ dqi + F ∗B2 + d

(

βa(q, q̄, p̄, p)(dq̄a + Γai (q, q̄)dqi)

)

,

i.e. ψ∗

L2
(ΩL2,B2) = ΩL1,B1 . It now remains to check that ψ∗

L2,β
EL2 = EL1 :

ψ∗

L2,βEL2 = ψ∗

L2,β

(

q̇i
∂L2

∂q̇i
+ ˙̄qa

∂L2

∂ ˙̄qa

)

− ψ∗

L2,βL2

= q̇i
∂L1

∂q̇i
−
(

ψ∗

L2,βL2 − βaΓai q̇
i − βaψ

a
L2,β

)

.

and the last term on the right-hand side is precisely L1. To conclude, we remark that the two
Hamiltonian vector fields XEL1

and XEL2
are ψL2,β-related since ψL2,β is a diffeomorphism,

ψ∗

L2,β
(ΩL2,B2) = ΩL1,B1 and ψ∗

L2,β
EL2 = EL1 . This completes the proof.

Remark 4. The fact that the two Hamiltonian vector fields are ψL2,β-related, implies that every
solution p1(t) ∈ P1 to the Euler-Lagrange equations for the system (ǫ(1), L1,B1) projects under F
to a solution p2(t) = F (p1(t)) ∈ P2 of the Euler-Lagrange equations for the system (ǫ(2), L2,B2).

Remark 5. The definition of the new Lagrangian L1 and the magnetic 2-form B1 closely resem-
bles the definition of the Routhian and magnetic 2-form in standard Routh reduction. In future
work, we will show that the standard Routh reduction procedure itself can be regarded as the
pull-back of the unreduced system with invariant Lagrangian L under a transformation of the
form ψL,β.

5 Reduction by stages

5.1 Lagrangian systems on semi-direct products

Generalities on semi-direct products. Suppose we have a representation of a Lie group
G on a vector space V and we write gv for the action of g ∈ G on v ∈ V . Likewise, the
corresponding representation of the Lie algebra g on V is written as g×V → V, (ξ, v) 7→ ξv. The
dual representation of G on V ∗ is defined by G×V ∗ → V ∗, (g, a) 7→ g∗a, where 〈g∗a, v〉 = 〈a, gv〉,
for arbitrary v ∈ V . We then denote the semi-direct product of G and V by GV = G⋉ V . The
group multiplication of two elements (g1, v1) and (g2, v2) in GV is

(g1, v1)(g2, v2) = (g1g2, v1 + g1v2),

the inverse of (g, v) is (g−1,−g−1v). The Lie algebra gV of GV is the semi-direct product algebra
g⋉ V . The adjoint action of GV on its Lie algebra is

Ad(g,v)(ξ, u) = (Adgξ, gu− (Adgξ)v),

for (g, v) ∈ GV and (ξ, u) ∈ gV arbitrary. The Lie bracket of (ξ1, u1) and (ξ2, u2) in gV equals

[(ξ1, u1), (ξ2, u2)]gV = ([ξ1, ξ2]g, ξ1u2 − ξ2u1) .
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The dual space of gV is given by

(gV )∗ = {(µ, a) |µ ∈ g∗, a ∈ V ∗} .

The coadjoint action of (g, v) ∈ GV on (µ, a) ∈ (gV )∗ is

Ad∗(g,v)(µ, a) = (Ad∗g(µ− v∗(a)), g∗a) = (Ad∗gµ− (g−1v)∗(g∗a), g∗a) ,

where v∗ : V ∗ → g∗ is defined by 〈v∗(a), ξ〉 = 〈a, ξv〉. It is a right action.

The closed subgroup (eG, V ) of GV is normal and GV/(eG, V ) = G. Similarly, gV/(0, V ) = g.
The isotropy subgroup of (µ, a) ∈ (gV )∗ w.r.t. the coadjoint action is

(GV )(µ,a) = {(g, v) ∈ GV | g∗a = a and Ad∗g(µ− v∗(a)) = µ} ,

from which it follows that (g, v) ∈ (GV )(µ,a) in particular implies that g ∈ Ga, where Ga is the
isotropy subgroup of a ∈ V ∗ under the action of G. In the specific case that the isotropy subgroup
Ga is trivial, i.e. Ga = {eG} with eG the unit element of G, any element in the isotropy group
(GV )(µ,a) is of the form (eG, v) with v∗(a) = 0. In this case (GV )(µ,a) determines a subgroup of
the abelian group V . Throughout the following, we assume that Ga = {eG}.

We now turn to a Lagrangian system (Q,L) with configuration space Q = S × GV whereby
the Lagrangian L is supposed to be invariant under the (lifted) action of GV onto the second
factor. As we will see we can perform a Routh reduction with respect to the full semi-direct
product group, or with respect to its abelian subgroup V . Both reduced systems are Lagrangian
magnetic systems, and will be equivalent in the sense of Theorem 2.

GV -regularity of a GV -invariant Lagrangian L. Following the definitions in the previous
section, the Lagrangian L determines a function ℓ : TS × gV → R, (vs, (ξ, u)) 7→ ℓ(vs, ξ, u). Fix
an element (µ, a) ∈ (gV )∗. The momentum relation JL (vs, (g, v)(ξ, u)) = (µ, a) is equivalent to
the equations

F2ℓ(vs, ξ, u) = Ad∗g(µ− v∗a) ,

F3ℓ(vs, ξ, u) = g∗a ,

where F2ℓ and F3ℓ correspond to the fiber derivatives of ℓ with respect to the second and third
argument, respectively. The Lagrangian is GV -regular if for each (vs, (g, v)(ξ, u)) ∈ TS×GV ×gV
the map gV → (gV )∗, (η, w) 7→ JL (vs, (g, v)(ξ + η, u+ w)) is bijective. This translates into the
existence, for each fixed vs ∈ TS, of a mapping (χ1, χ2) : TS × (gV )∗ → gV such that, for
arbitrary (vs, (ν, b)) ∈ TS × (gV )∗,

F2ℓ (vs, χ1(vs, ν, b), χ2(vs, ν, b)) = ν ,

F3ℓ (vs, χ1(vs, ν, b), χ2(vs, ν, b)) = b ,

Throughout this section we assume moreover that a map τ : TS × g× V ∗ → V exists such that

F3ℓ (vs, ξ, τ(vs, ξ, b)) = b,

for arbitrary (vs, ξ, b) ∈ TS× g× V ∗. From the GV -regularity it then follows that the condition
F2ℓ (vs, ξ, τ(vs, ξ, b)) = ν is equivalent to ξ = χ1(vs, ν, b) and, additionally, τ(vs, χ1(vs, ν, b), b) =
χ2(vs, ν, b).
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We now show that the existence of the function τ is equivalent to L being V -regular (where V
is identified with the abelian subgroup {eG} × V of GV ). Recall that L is V -regular if for every
(vs, (g, v)(ξ, u)) ∈ T (S ×GV ) ∼= TS ×GV × gV , and each b ∈ V ∗, there is a unique u′ ∈ V such
that

〈b, w〉 =
d

dǫ

∣

∣

∣

∣

ǫ=0

L
(

vs, (g, v)(ξ, u+ u′ + ǫg−1w)
)

= 〈F3ℓ(vs, ξ, u+ u′), g−1w〉, for all w ∈ V.

More specifically, for (vs, ξ) ∈ TS × g arbitrary, there exists for every b ∈ V ∗ a unique u such
that F3ℓ(vs, ξ, u) = b. This precisely coincides with the existence of the map τ .

Routh reduction w.r.t. GV . Fix a local coordinate chart (xi) on S and choose a regular
momentum value (µ, a) ∈ (gV )∗. We will write χ̂1(x, ẋ, ·, ) and χ̂2(x, ẋ, ·) for the restrictions of
the maps χ1(x, ẋ, ·) and χ2(x, ẋ, ·), respectively, to the coadjoint orbit O(µ,a) ⊂ (gV )∗ of (µ, a).
According to what we found in Section 3, the reduced Euler-Lagrange equations of motion then
become

ν̇ = ad∗χ1(x,ẋ,ν,b)
ν − (χ2(x, ẋ, ν, b))

∗
b,

ḃ = (χ1(x, ẋ, ν, b))
∗
b,

d

dt

(

∂R
(µ,a)
1

∂ẋi
(x, ẋ, ν, b)

)

−
∂R

(µ,a)
1

∂xi
(x, ẋ, ν, b) = 0,

where the Routhian R
(µ,a)
1 is the function on TS ×O(µ,a) given by

R
(µ,a)
1 (x, ẋ, ν, b) = ℓ (vs, χ̂1(x, ẋ, ν, b), χ̂2(x, ẋ, ν, b)) − 〈ν, χ̂1(x, ẋ, ν, b)〉 − 〈b, χ̂2(x, ẋ, ν, b)〉 .

For later use we now compute the magnetic 2-form B(µ,a) explicitly. It is the trivial extension (i.e.
the pull-back) to S ×O(µ,a) of the reduction to O(µ,a)

∼= GV/GV(µ,a) of the exterior derivative
of the 1-form A1

(µ,a) on GV which is defined by

A1
(µ,a)(g, v)

(

(g, v)(ξ, u)
)

= 〈µ,Adgξ〉 + 〈a, gu− (Adgξ)v〉

= 〈Ad∗g(µ− v∗(a)), ξ〉 + 〈g∗a, u〉.

First, we introduce the following definition.

Definition 11. θ(µ,a) is the 1-form on O(µ,a) that satisfies

θ(µ,a)(ν, b)(ν̇, ḃ) = 〈ν, ξ〉,

with (ν̇, ḃ = ξ∗b) ∈ T(ν,b=g∗a)O(µ,a) ⊂ (gV )∗ arbitrary.

This is well defined: by assumption, Ga is trivial for all a ∈ V ∗, hence there is a unique ξ ∈ g

such that ḃ = ξ∗b. Then we can prove:

Lemma 2. B(µ,a) = dθ(µ,a).
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Proof. First note that the second term 〈g∗a, u〉 on the right-hand side of the above expression
for A1

(µ,a) does not in fact contribute to the computation of B(µ,a): it is the contraction of the
fixed ‘momentum’ a with the tangent vector gu to the linear space V and therefore vanishes
when taking the exterior derivative.

Therefore, it is sufficient to show that θ(µ,a) is the reduction to O(µ,a) of the 1-form A1
(µ,a) with

the term 〈g∗a, u〉 omitted. For that purpose we write down the tangent map of the projection
GV → GV/GV(µ,a) ∼= O(µ,a):

(g, v, gξ, gu) ∈ T (GV ) 7→ (ν = Ad∗g(µ− v∗(a)), b = g∗a, ν̇ = ad∗ξν, ḃ = ξ∗b) ∈ TO(µ,a).

From this we can deduce that the first term on the right-hand side of the above expression for

A1
(µ,a)(g, v)

(

(g, v)(ξ, u)
)

equals 〈ν, ξ〉.

Routh reduction w.r.t. V . Here we use the V -principal connection on S ×GV

A2(vs, gξ, gu) = gu ∈ V,

which is the pull-back to S×GV of the standard V -principal connection on the Abelian group V .
If a is a regular value of the momentum map, the associated Routhian is a function on T (S×G)
and equals

Ra
2(vs, gξ) = ℓ(vs, ξ, τ(vs, ξ, g

∗a)) − 〈g∗a, τ(vs, ξ, g
∗a)〉.

In the present case the magnetic 2-form Ba vanishes.

The compatible transformation.

P1 = S ×O(µ,a) P2 = S ×G

Q1 = S Q2 = S ×G

F

f

id

In the above diagram we introduce the different mappings involved. The map F is determined
from the projection O(µ,a) → G, (ν, b) 7→ g where g is uniquely determined from g∗a = b. f is
simply the projection onto the first factor, and then V f = kerTf = 0S × TG ⊂ T (S ×G). The
pair (F, f) is a transformation pair.

Theorem 3. Assume that Ga = {eG} for a ∈ V ∗ and that the map ·∗a : V → g∗; v 7→

v∗a is onto. Then the two magnetic Lagrangian systems (S × O(µ,a) → S,R
(µ,a)
1 ,B(µ,a)) and

(S×G→ S×G,Ra
2 , 0) are equivalent in the sense of Theorem 2, i.e. there is a (F, f)-compatible

diffeomorphism of the form ψRa
2 ,β

and a connection A : TQ2 → V f such that the Lagrangians
and the magnetic 2-forms satisfy

1. R
(µ,a)
1 (vq1 , p1) =

(

ψ∗

Ra
2 ,β

Ra
2

)

(vq1 , p1) − 〈β(p1),A(ψTQ2

Ra
2 ,β

(vq1 , p1))〉;

2. B1 = F ∗B2 + d (〈β,AP1〉).

The Hamiltonian vector fields XE
R

(µ,a)
1

and XERa
2
are ψRa

2 ,β
-related.
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Proof. We now introduce the remaining elements needed to apply Theorem 2, i.e. a map β and
a connection f : Q2 → Q1:

1. The map β is defined as follows: β : P1 → V ∗f, (s, ν, b) 7→ (s, g, 0s, ν ◦ TLg−1) where
g ∈ G is such that g∗a = b. Note that the conditions Ga = {eG} and im ·∗ a = g∗ imply
that the fibres F−1(s, g) ∼= V/ ker ·∗a and V ∗

s f
∼= g∗ are diffeomorphic. We show this by

constructing pointwise an inverse for β. Given an arbitrary element in V ∗

(s,g)f and let ν be
the corresponding element in the dual of the Lie algebra g. Because ·∗a is onto, a vector
v ∈ V exists such that v∗a = µ − Ad∗g−1ν. The element (ν, b = g∗a) then determines a
point in O(µ,a), is unique and by construction, it determines the inverse image for ν under
β|F−1(s,g).

2. The connection used to relate the dynamics is the pull-back to S × G of the standard
zero-curvature connection with horizontal distribution 0G × TS ⊂ T (G× S).

Note that the contraction of the β-map and the vertical part of the standard connection precisely
equals the 1-form θ(µ,a) on O(µ,a): (ν, b, ν̇, ḃ) 7→ 〈ν, ξ〉, with ξ∗b = ḃ. From Lemma 2, the exterior
derivative of θ(µ,a) is precisely B(µ,a).

It now remains to show that the two Routhians R
(µ,a)
1 and Ra

2 are transformed into each other
by means of ψRa

2 ,β
and A. For that purpose we derive an explicit formula for the second or

‘momentum’ condition in Proposition 3 (put L2 = Ra
2). Let (vs, gξ) be arbitrary in T (S × G).

Fix an element gη ∈ TgG. Then

〈F2R
a
2(vs, gξ), gη〉 =

d

dǫ

∣

∣

∣

∣

ǫ=0

Ra
2(vs, gξ + ǫgη)

=
d

dǫ

∣

∣

∣

∣

ǫ=0

(

ℓ(vs, ξ + ǫη, τ(vs, ξ + ǫη, g∗a)) − 〈g∗a, τ(vs, ξ + ǫη, g∗a)〉
)

= 〈F2ℓ(vs, ξ, τ(vs, ξ, g
∗a)), η〉.

Therefore, to construct the transformation ψR2,β we have to solve the following equation for ξ:

F2ℓ(vs, ξ, τ(vs, ξ, g
∗a)) = β(s, ν, b) ◦ TLg = ν.

By definition of τ , the solution ξ is precisely χ1(vs, ν, b). From this, we necessarily have that the
composition τ(vs, χ1(vs, ν, b), b) equals χ2(vs, ν, b). We now compute the transformation of R2

under ψR2,β and A:

(

Ra
2(vs, gξ) − 〈ν, ξ〉

)

∣

∣

∣

∣

F2ℓ(vs,ξ,τ(vs,ξ,g∗a))=ν

= ℓ(vs, χ1(vs, ν, b), χ2(vs, ν, b)) − 〈b, χ2(vs, ν, b)〉 − 〈ν, χ1(vs, ν, b)〉.

This is precisely the Routhian R
(µ,a)
1 and using Theorem 2, this concludes the proof.

5.2 Example: Elroy’s Beanie

The example is taken from [13]. The system consists of two planar rigid bodies that are attached
in their center of mass. The system moves in the plane and is subject to some conservative force
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with potential V . The configuration space is S1 × SE(2), with coordinates (ϕ, θ, x, y). Here
(x, y) refers to the position of the center of mass, θ is the rotation angle of the first rigid body,
and ϕ ∈ S1 denotes the relative rotation of the second body w.r.t. the first. The kinetic energy
of the system is SE(2)-invariant and we will also suppose that the potential is SE(2)-invariant.
This means in fact that only the relative position of the two bodies matters for the dynamics of
the system. The Lagrangian is of the form

L =
1

2
m(ẋ2 + ẏ2) +

1

2
I1θ̇

2 +
1

2
I2(θ̇ + ϕ̇)2 − V (ϕ) .

The Euler-Lagrange equations of the system are, written in normal form,

ẍ = 0, ÿ = 0, θ̈ =
1

I1
V ′, ϕ̈ = −

I1 + I2
I1I2

V ′ ,

where V ′ = dV/dϕ.

The semi-direct product SE(2). The special Euclidean group SE(2) is the semi-direct prod-
uct of the Lie group G = S1 with V = R2, parametrized by (θ, x, y), where the action of G on
V is defined by rotation in the plane. For convenience we identify R2 with C in the usual way:
(x, y) 7→ z = x+ iy. Then the action of an element θ ∈ S1 on z ∈ C is by multiplication eiθz.

The identity of SE(2) corresponds to (θ = 0, z = 0) and the group multiplication is given by

(θ1, z1) ∗ (θ2, z2) = (θ1 + θ2, e
iθ1z2 + z1).

Elements of the Lie-algebra se(2) of SE(2) are denoted by (ξ, w) ∈ R × C. The associated
infinitesimal action of the Lie algebra R of S1 on C then reads iξz, with ξ ∈ R and z ∈ C

arbitrary. The adjoint action equals Ad(θ,z)(ξ, w) = (ξ, eiθw − iξz). If (θ, x, y, θ̇, ẋ, ẏ) is an
element in TSE(2), the corresponding element in the left identification with SE(2) × se(2) is
(θ, z, θ̇, w), with w = e−iθż and ż = ẋ + iẏ. Denote the real and complex part of w by u, v
respectively, w = u + iv. This allows us to write down the Lagrangian ℓ on TS1 × se(2) in the
left identification as

ℓ(ϕ, ϕ̇, θ̇, w) =
1

2
m(u2 + v2) +

1

2
I1θ̇

2 +
1

2
I2(θ̇ + ϕ̇)2 − V (ϕ).

Elements of the dual se∗(2) ∼= R× C of se(2) are written as (µ, a) and the contraction with an
arbitrary element (ξ, w) ∈ se(2) is µξ+Re(aw). The dual action g∗a = e−iθa and infinitesimally
ξ∗a = −iξa. Clearly the isotropy group of a is trivial for any a. Finally, for the element z∗a in
the dual of the Lie algebra of S1 we obtain: z∗a = Re(−iaz). The map ·∗a : C → R is onto for
any a 6= 0.

Reduction with respect to SE(2). The Lagrangian being of mechanical type we can compute
the Routhian as follows:

2(R
(µ,a)
1 + V )(ϕ, ϕ̇, ν, b) =

(

∂ℓ

∂ϕ̇
ϕ̇−

∂ℓ

∂θ̇
θ̇ −

∂ℓ

∂u
u−

∂ℓ

∂v
v

)

{

ν = (I1 + I2)θ̇ + I2ϕ̇
b = mw

=
(

I2ϕ̇
2 − (I1 + I2)θ̇2 −mu2 −mv2

)

{

ν = (I1 + I2)θ̇ + I2ϕ̇
b = mw

.
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The momentum relations are regular:
{

θ̇ = ν−I2ϕ̇
I1+I2

= χ1(ϕ, ϕ̇, ν, b),

w = b
m = χ2(ϕ, ϕ̇, ν, b).

Finally we obtain the Routhian after a straightforward computation:

R
(µ,a)
1 (ϕ, ϕ̇, ν, b) =

1

2

I1I2
I1 + I2

ϕ̇2 +
I2

I1 + I2
νϕ̇− V (ϕ) +

bb

2m
−

1

2

ν2

I1 + I2
.

The reduced equations of motion. The Routh reduced equations of motions then equal

ν̇ = Re

(

−
i

m
bb

)

= 0,

ḃ = −i

(

ν − I2ϕ̇

I1 + I2

)

b,

d

dt

(

∂R
(µ,a)
1

∂ϕ̇
(ν, b, ϕ, ϕ̇)

)

−
∂R

(µ,a)
1

∂ϕ
(ν, b, ϕ, ϕ̇) =

I1I2
I1 + I2

ϕ̈+
I2

I1 + I2
ν̇ + V ′(ϕ) = 0.

The second equation of motion is clearly a rotation of the momentum b with angular velocity
(I2ϕ̇−ν)/(I1+I2). The choice of the fixed momentum a is reflected in these equations as bb = aa.

Abelian reduction. We now perform Routh reduction w.r.t the abelian symmetry group R2

of translations in the x and y direction. Let us denote the symmetry group by V = R2 and
study the quotient spaces. The conserved (complex) momentum for this action is a = m(ẋ+ iẏ).
We use the same momentum values as before: let b = e−iθa. The map τ(θ̇, b, ϕ, ϕ̇) = b

m . The
Routhian is obtained by computing

2(Ra
2 + V )(θ, ϕ, θ̇, ϕ̇) =

(

∂ℓ

∂ϕ̇
ϕ̇+

∂ℓ

∂θ̇
θ̇ −

∂ℓ

∂u
u−

∂ℓ

∂v
v

)

e−iθa=mw

=
(

I1θ̇
2 + I2(θ̇ + ϕ̇)2 −mww

)

e−iθa=mw

= I1θ̇
2 + I2(θ̇ + ϕ̇)2 −

aa

m
.

Thus the Routh reduced system is a standard Lagrangian system on S1 × S1 with Lagrangian
1
2I1θ̇

2 + 1
2I2(θ̇ + ϕ̇)2 − V (ϕ) (we ignore irrelevant constant terms).

Equivalence. Using Theorem 3, both reduced systems are equivalent in the sense that a
transformation ψRa

2 ,β
exists relating both magnetic Lagrangian systems. In this case, the β-

map fixes the remaining momentum β(ν, b, ϕ) = ν. The diffeomorphism ψRa
2 ,β

then satisfies

ψRa
2 ,β

(ϕ, ϕ̇, ν, b = e−iθa) = (θ, ϕ, ϕ̇, θ̇ = (ν − I2ϕ̇)/(I1 + I2)). It then takes some tedious compu-

tations to see that R
(µ,a)
1 = ψ∗

Ra
2 ,β

Ra
2 − ν(ν − I2ϕ̇)/(I1 + I2)). The 1-form θ(µ,a) on O(µ,a) from

Definition 11 equals (ν̇, ḃ = −iθ̇b) 7→ νθ̇.
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