1,121 research outputs found

    Multi-waveband Emission Maps of Blazars

    Full text link
    We are leading a comprehensive multi-waveband monitoring program of 34 gamma-ray bright blazars designed to locate the emission regions of blazars from radio to gamma-ray frequencies. The "maps" are anchored by sequences of images in both total and polarized intensity obtained with the VLBA at an angular resolution of ~ 0.1 milliarcseconds. The time-variable linear polarization at radio to optical wavelengths and radio to gamma-ray light curves allow us to specify the locations of flares relative to bright stationary features seen in the images and to infer the geometry of the magnetic field in different regions of the jet. Our data reveal that some flares occur simultaneously at different wavebands and others are only seen at some of the frequencies. The flares are often triggered by a superluminal knot passing through the stationary "core" on the VLBA images. Other flares occur upstream or even parsecs downstream of the core.Comment: 5 pages, including 2 figures; to be published in Journal of Astrophysics and Astronomy, as part of proceedings of the meeting "Multiwavelength Variability of Blazars" held in Guangzhou, China, in September 201

    Oblique Shocks As The Origin Of Radio To Gamma-ray Variability In AGN

    Full text link
    The `shock in jet' model for cm-waveband blazar variability is revisited, allowing for arbitrary shock orientation with respect to the jet flow direction, and both random and ordered magnetic field. It is shown that oblique shocks can explain events with swings in polarization position angle much less than the 90 deg. associated with transverse structures, while retaining the general characteristics of outbursts, including spectral behavior and level of peak percentage polarization. Models dominated by a force-free, minimum energy magnetic field configuration (essentially helical) display a shallow rise in percentage polarization and frequency dependent swing in polarization position angle not in agreement with the results of single-dish monitoring observations, implying that the field is predominantly random in the quiescent state. Outbursts well-explained by the `shock in jet' model are present during gamma-ray flaring in several sources, supporting the idea that shock events are responsible for activity from the radio to gamma-ray bands.Comment: 19 pages, 8 figures, accepted for publication in Ap

    Multiwavelength Variations of 3C 454.3 during the November 2010 to January 2011 Outburst

    Full text link
    We present multiwavelength data of the blazar 3C 454.3 obtained during an extremely bright outburst from November 2010 through January 2011. These include flux density measurements with the Herschel Space Observatory at five submillimeter-wave and far-infrared bands, the Fermi Large Area Telescope at gamma-ray energies, Swift at X-ray, ultraviolet (UV), and optical frequencies, and the Submillimeter Array at 1.3 mm. From this dataset, we form a series of 52 spectral energy distributions (SEDs) spanning nearly two months that are unprecedented in time coverage and breadth of frequency. Discrete correlation anlaysis of the millimeter, far-infrared, and gamma-ray light curves show that the variations were essentially simultaneous, indicative of co-spatiality of the emission, at these wavebands. In contrast, differences in short-term fluctuations at various wavelengths imply the presence of inhomegeneities in physical conditions across the source. We locate the site of the outburst in the parsec-scale core, whose flux density as measured on 7 mm Very Long Baseline Array images increased by 70 percent during the first five weeks of the outburst. Based on these considerations and guided by the SEDs, we propose a model in which turbulent plasma crosses a conical standing shock in the parsec-scale region of the jet. Here, the high-energy emission in the model is produced by inverse Compton scattering of seed photons supplied by either nonthermal radiation from a Mach disk, thermal emission from hot dust, or (for X-rays) synchrotron radiation from plasma that crosses the standing shock. For the two dates on which we fitted the model SED to the data, the model corresponds very well to the observations at all bands except at X-ray energies, where the spectrum is flatter than observed.Comment: Accepted for publication in Astrophysical Journal. 82 pages, 13 figure

    Time dependent spectral modeling of Markarian 421 during a violent outburst in 2010

    Full text link
    We present the results of extensive modeling of the spectral energy distributions (SEDs) of the closest blazar (z=0.031) Markarian 421 (Mrk 421) during a giant outburst in February 2010. The source underwent rapid flux variations in both X-rays and very high energy (VHE) gamma-rays as it evolved from a low-flux state on 2010 February 13-15 to a high-flux state on 2010 February 17. During this period, the source exhibited significant spectral hardening from X-rays to VHE gamma-rays while exhibiting a "harder when brighter" behavior in these energy bands. We reproduce the broadband SED using a time-dependent multi-zone leptonic jet model with radiation feedback. We find that an injection of the leptonic particle population with a single power-law energy distribution at shock fronts followed by energy losses in an inhomogeneous emission region is suitable for explaining the evolution of Mrk 421 from low- to high-flux state in February 2010. The spectral states are successfully reproduced by a combination of a few key physical parameters, such as the maximum &\& minimum cutoffs and power-law slope of the electron injection energies, magnetic field strength, and bulk Lorentz factor of the emission region. The simulated light curves and spectral evolution of Mrk 421 during this period imply an almost linear correlation between X-ray flux at 1-10 keV energies and VHE gamma-ray flux above 200 GeV, as has been previously exhibited by this source. Through this study, a general trend that has emerged for the role of physical parameters is that, as the flare evolves from a low- to a high-flux state, higher bulk kinetic energy is injected into the system with a harder particle population and a lower magnetic field strength.Comment: 13 pages, 5 figures, accepted for publication in MNRA
    • …
    corecore