2,063 research outputs found

    Multi-waveband Emission Maps of Blazars

    Full text link
    We are leading a comprehensive multi-waveband monitoring program of 34 gamma-ray bright blazars designed to locate the emission regions of blazars from radio to gamma-ray frequencies. The "maps" are anchored by sequences of images in both total and polarized intensity obtained with the VLBA at an angular resolution of ~ 0.1 milliarcseconds. The time-variable linear polarization at radio to optical wavelengths and radio to gamma-ray light curves allow us to specify the locations of flares relative to bright stationary features seen in the images and to infer the geometry of the magnetic field in different regions of the jet. Our data reveal that some flares occur simultaneously at different wavebands and others are only seen at some of the frequencies. The flares are often triggered by a superluminal knot passing through the stationary "core" on the VLBA images. Other flares occur upstream or even parsecs downstream of the core.Comment: 5 pages, including 2 figures; to be published in Journal of Astrophysics and Astronomy, as part of proceedings of the meeting "Multiwavelength Variability of Blazars" held in Guangzhou, China, in September 201

    Theoretical interpretation of the HEAO-3 observations of Cygnus X-3 under the HEAO-3 Guest Investigator Program

    Get PDF
    A model of the galactic X-ray source Cygnus X-3 (Cyg X-3) is presented which deviates from previous models by positing that the X-rays originate in a jet rather than a binary system consiting of an ordinary star and a collapsed object. In the new model, the 4.8 hour period of Cyg X-3 is caused by variable absorption which occurs as the jet precesses. The primary role of the accretion disk corona (ADC) in modulating Cyg X-3 radiation is to make the observed intensity of a blob of material in a jet appear dimmer by absorption. The needed derivation of the positional dependence of the density of the ADC is freed of some complications by assuming that only the inner regions of the disk are precessing, with a period shorter than 4.8 hours. This model permits the secondary star to be a supergiant, as indicated by the luminosity of the system. The model is especially helpful in interpreting production of radio outbursts and very high energy gamma rays

    Hard gamma ray emission from blazars

    Get PDF
    The gamma-ray emission expected from compact extragalactic sources of nonthermal radiation is examined. The highly variable objects in this class should produce copious amounts of self-Compton gamma-rays in the compact relativistic jet. This is shown to be a likely interpretation of the hard gamma-ray emission recently detected from the quasar 3C 279 during a period of strong nonthermal flaring at lower frequencies. Ways of discriminating between the self-Compton model and other possible gamma-ray emission mechanisms are discussed

    Modeling the time-dependent polarization of blazars

    Get PDF
    Linear polarization is an extremely valuable observational tool for probing the dynamic physical conditions of blazar jets. Some patterns are seen in the data, suggestive of order that can be explained by shock waves and helical magnetic field components. However, much disorder is apparent, which implies that turbulence plays a major role as well, especially in the fluctuations of flux and polarization, and perhaps particle acceleration. Here, we present some actual flux and polarization versus time data, plus simulations of model jets. We analyze the output of the simulations in a manner that can be compared with observational data. The results suggest that the ratio of turbulent to ordered magnetic fields varies with time.AST-1615796 - National Science Foundation; NASA; NNX14AQ58G; NNX15AR45

    Multiwavelength Variations of 3C 454.3 during the November 2010 to January 2011 Outburst

    Full text link
    We present multiwavelength data of the blazar 3C 454.3 obtained during an extremely bright outburst from November 2010 through January 2011. These include flux density measurements with the Herschel Space Observatory at five submillimeter-wave and far-infrared bands, the Fermi Large Area Telescope at gamma-ray energies, Swift at X-ray, ultraviolet (UV), and optical frequencies, and the Submillimeter Array at 1.3 mm. From this dataset, we form a series of 52 spectral energy distributions (SEDs) spanning nearly two months that are unprecedented in time coverage and breadth of frequency. Discrete correlation anlaysis of the millimeter, far-infrared, and gamma-ray light curves show that the variations were essentially simultaneous, indicative of co-spatiality of the emission, at these wavebands. In contrast, differences in short-term fluctuations at various wavelengths imply the presence of inhomegeneities in physical conditions across the source. We locate the site of the outburst in the parsec-scale core, whose flux density as measured on 7 mm Very Long Baseline Array images increased by 70 percent during the first five weeks of the outburst. Based on these considerations and guided by the SEDs, we propose a model in which turbulent plasma crosses a conical standing shock in the parsec-scale region of the jet. Here, the high-energy emission in the model is produced by inverse Compton scattering of seed photons supplied by either nonthermal radiation from a Mach disk, thermal emission from hot dust, or (for X-rays) synchrotron radiation from plasma that crosses the standing shock. For the two dates on which we fitted the model SED to the data, the model corresponds very well to the observations at all bands except at X-ray energies, where the spectrum is flatter than observed.Comment: Accepted for publication in Astrophysical Journal. 82 pages, 13 figure

    On the nature of an ejection event in the jet of 3C111

    Full text link
    We present a possible scenario for the ejection of a superluminal component in the jet of the Broad Line Radio Galaxy 3C111 in early 1996. VLBI observations at 15 GHz discovered the presence of two jet features on scales smaller than one parsec. The first component evolves downstream, whereas the second one fades out after 1 parsec. We propose the injection of a perturbation of dense material followed by a decrease in the injection rate of material in the jet as a plausible explanation. This scenario is supported by 1D relativistic hydrodynamics and emission simulations. The perturbation is modeled as an increase in the jet density, without modifying the original Lorentz factor in the initial conditions. We show that an increase of the Lorentz factor in the material of the perturbation fails to reproduce the observed evolution of this flare. We are able to estimate the lifetime of the ejection event in 3C111 to be 36\pm7 days.Comment: Accepted for publication in Astronomy & Astrophysics Letter
    corecore