78 research outputs found

    Social labs as good practice for transdisciplinary engagement processes in research and innovation

    Get PDF
    This article discusses a ‘Social Lab process’ applied in the field of research and innovation as good practice for transdisciplinary processes, and elaborates upon the structure and dynamics of these processes. It sheds light on how engagement processes could be set up for a more inclusive and participant-friendly atmosphere, allowing for meaningful and sustainable outcomes. Supported by data from a qualitative analysis of 19 Social Lab experiences according to the thematic programmes of the European Commission Horizon 2020 research framework programme, this article outlines requirements that need to be taken into account when implementing a transdisciplinary process in a Social Lab. Based on the concept of transdisciplinary research and the experience of this one-and-a-half-year process, the elements of participatory approaches required for successful implementation of a Social Lab, starting with inviting participants to develop small implementation projects (pilot activities) are described. The qualitative analysis of the process documentations highlights the importance of a clear definition of the framework and purpose of the process. Concrete assignments of the lab teams and roles, and the implementation of pilot activities, further proved crucial for successful and sustainable results. On this basis, recommendations for a fruitful participatory process are formulated

    The brazilian core collection of cassava.

    Get PDF
    The Brazilian cassava Germplasm Collection is the largest national collection, and contains strategic genetic variation for the deveopment of breeding programs worldwide.Suplemento. Edição dos Resumos do 4 International Scientific Meeting of the Cassava Biotechnology Network, Salvador, nov. 1998

    The brazilian core collection of cassava.

    Get PDF
    The size of Germplasm Collections has become an important limitation for theirr use in plant breeding programs. To overcome this limitation the Core Collection concept has been proposed. A Core Collection consists of a set of accessions selected to represent the genetic diversity of the base collection with minimum repetitiveness. This insures the conservation of maximum genetic variation, allowing rapid evaluation of germplasm and better access to the base collection. The brazilian germplasm Collection of Cassava is the largest national collection, and contains strategic genetic variation for the development of breeding programs worldwide. It consists of approximately 3350 accessions conserved in 7 regional Active Germplasm Banks. To develop the Core Collection a hierarchical stratification similar to that proposed by Cordeiro et al (1995) was used. Two key criteria were used for the stratification of the accessions: category and origin. According to category the accessions were classified as landraces or breeding materials. Within the landraces strutum, accessions were classified according to ecogeographical origin using the Geographic Information System. The selection of the members of the Core, was done trying to represent the genetic variability within each ecogeographic zone, incorporating the knowledge and experience of the curators. This Core Collection will be a logical and efficient starting point for studying the Base Collection using biotechnological tools

    Human MLL/KMT2A gene exhibits a second breakpoint cluster region for recurrent MLL–USP2 fusions

    Get PDF
    Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq: PQ-2017#305529/2017-0Deutsche Forschungsgemeinschaft, DFG: MA 1876/12-1Alexander von Humboldt-Stiftung: 88881.136091/2017-01RVO-VFN64165, 26/203.214/20172018.070.1Associazione Italiana per la Ricerca sul Cancro, AIRC: IG2015, 17593Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, CAPESCancer Australia: PdCCRS1128727CancerfondenBarncancerfondenVetenskapsrÃ¥det, VRCrafoordska StiftelsenKnut och Alice Wallenbergs StiftelseLund University Medical Faculty FoundationXiamen University, XMU2014S0617-74-30019C7838/A15733Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung, SNSF: 31003A_140913CNIBInstitut National Du Cancer, INCaR01 NCI CA167824National Institutes of Health, NIH: S10OD0185222016/2017, 02R/2016AU 525/1-1Deutschen Konsortium für Translationale Krebsforschung, DKTK70112951Smithsonian Institution, SIIsrael Science Foundation, ISFAustrian Science Fund, FWF: W1212SFB-F06107, SFB-F06105Acknowledgements BAL received a fellowship provided by CAPES and the Alexander von Humboldt Foundation (#88881.136091/2017-01). ME is supported by CNPq (PQ-2017#305529/2017-0) and FAPERJ-JCNE (#26/203.214/2017) research scholarships, and ZZ by grant RVO-VFN64165. GC is supported by the AIRC Investigator grant IG2015 grant no. 17593 and RS by Cancer Australia grant PdCCRS1128727. This work was supported by grants to RM from the “Georg und Franziska Speyer’sche Hochsschulstiftung”, the “Wilhelm Sander foundation” (grant 2018.070.1) and DFG grant MA 1876/12-1.Acknowledgements This work was supported by The Swedish Childhood Cancer Foundation, The Swedish Cancer Society, The Swedish Research Council, The Knut and Alice Wallenberg Foundation, BioCARE, The Crafoord Foundation, The Per-Eric and Ulla Schyberg Foundation, The Nilsson-Ehle Donations, The Wiberg Foundation, and Governmental Funding of Clinical Research within the National Health Service. Work performed at the Center for Translational Genomics, Lund University has been funded by Medical Faculty Lund University, Region Skåne and Science for Life Laboratory, Sweden.Acknowledgements This work was supported by the Fujian Provincial Natural Science Foundation 2016S016 China and Putian city Natural Science Foundation 2014S06(2), Fujian Province, China. Alexey Ste-panov and Alexander Gabibov were supported by Russian Scientific Foundation project No. 17-74-30019. Jinqi Huang was supported by a doctoral fellowship from Xiamen University, China.Acknowledgments This work was supported by the Swiss National Science Foundation (grant 31003A_140913; OH) and the Cancer Research UK Experimental Cancer Medicine Centre Network, Cardiff ECMCI, grant C7838/A15733. We thank N. Carpino for the Sts-1/2 double-KO mice.Acknowledgements This work was supported by the French National Cancer Institute (INCA) and the Fondation Française pour la Recherche contre le Myélome et les Gammapathies (FFMRG), the Intergroupe Francophone du Myélome (IFM), NCI R01 NCI CA167824 and a generous donation from Matthew Bell. This work was supported in part through the computational resources and staff expertise provided by Scientific Computing at the Icahn School of Medicine at Mount Sinai. Research reported in this paper was supported by the Office of Research Infrastructure of the National Institutes of Health under award number S10OD018522. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The authors thank the Association des Malades du Myélome Multiple (AF3M) for their continued support and participation. Where authors are identified as personnel of the International Agency for Research on Cancer / World Health Organization, the authors alone are responsible for the views expressed in this article and they do not necessarily represent the decisions, policy or views of the International Agency for Research on Cancer / World Health Organization.We are indebted to all members of our groups for useful discussions and for their critical reading of the manuscript. Special thanks go to Silke Furlan, Friederike Opitz and Bianca Killing. F.A. is supported by the Deutsche For-schungsgemeinschaft (DFG, AU 525/1-1). J.H. has been supported by the German Children’s Cancer Foundation (Translational Oncology Program 70112951), the German Carreras Foundation (DJCLS 02R/2016), Kinderkrebsstiftung (2016/2017) and ERA PerMed GEPARD. Support by Israel Science Foundation, ERA-NET and Science Ministry (SI). A. B. is supported by the German Consortium of Translational Cancer Research, DKTK. We are grateful to the Jülich Supercomputing Centre at the Forschungszemtrum Jülich for granting computing time on the supercomputer JURECA (NIC project ID HKF7) and to the “Zentrum für Informations-und Medientechnologie” (ZIM) at the Heinrich Heine University Düsseldorf for providing computational support to H. G. The study was performed in the framework of COST action CA16223 “LEGEND”.Funding The work was supported by the Austrian Science Fund FWF grant SFB-F06105 to RM and SFB-F06107 to VS and FWF grant W1212 to VS

    A large West Antarctic Ice Sheet explains early Neogene sea-level amplitude

    Get PDF
    Early to Middle Miocene sea-level oscillations of approximately 40-60 m estimated from far-field records1-3 are interpreted to reflect the loss of virtually all East Antarctic ice during peak warmth2. This contrasts with ice-sheet model experiments suggesting most terrestrial ice in East Antarctica was retained even during the warmest intervals of the Middle Miocene4,5. Data and model outputs can be reconciled if a large West Antarctic Ice Sheet (WAIS) existed and expanded across most of the outer continental shelf during the Early Miocene, accounting for maximum ice-sheet volumes. Here we provide the earliest geological evidence proving large WAIS expansions occurred during the Early Miocene (~17.72-17.40 Ma). Geochemical and petrographic data show glacimarine sediments recovered at International Ocean Discovery Program (IODP) Site U1521 in the central Ross Sea derive from West Antarctica, requiring the presence of a WAIS covering most of the Ross Sea continental shelf. Seismic, lithological and palynological data reveal the intermittent proximity of grounded ice to Site U1521. The erosion rate calculated from this sediment package greatly exceeds the long-term mean, implying rapid erosion of West Antarctica. This interval therefore captures a key step in the genesis of a marine-based WAIS and a tipping point in Antarctic ice-sheet evolution

    Nitrous oxide may not increase the risk of cancer recurrence after colorectal surgery: a follow-up of a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Even the best cancer surgery is usually associated with minimal residual disease. Whether these remaining malignant cells develop into clinical recurrence is at least partially determined by adequacy of host defense, especially natural killer cell function. Anesthetics impair immune defenses to varying degrees, but nitrous oxide appears to be especially problematic. We therefore tested the hypothesis that colorectal-cancer recurrence risk is augmented by nitrous oxide administration during colorectal surgery.</p> <p>Methods</p> <p>We conducted a 4- to 8-year follow-up of 204 patients with colorectal cancer who were randomly assigned to 65% nitrous oxide (n = 97) or nitrogen (n = 107), balanced with isoflurane and remifentanil. The primary outcome was the time to cancer recurrence. Our primary analysis was a multivariable Cox-proportional-hazards regression model that included relevant baseline variables. In addition to treatment group, the model considered patient age, tumor grade, dissemination, adjacent organ invasion, vessel invasion, and the number of nodes involved. The study had 80% power to detect a 56% or greater reduction in recurrence rates (i.e., hazard ratio of 0.44 or less) at the 0.05 significance level.</p> <p>Results</p> <p>After adjusting for significant baseline covariables, risk of recurrence did not differ significantly for nitrous oxide and nitrogen, with a hazard ratio estimate (95% CI) of 1.10 (0.66, 1.83), <it>P </it>= 0.72. No two-way interactions with the treatment were statistically significant.</p> <p>Conclusion</p> <p>Colorectal-cancer recurrence risks were not greatly different in patients who were randomly assigned to 65% nitrous oxide or nitrogen during surgery. Our results may not support avoiding nitrous oxide use to prevent recurrence of colorectal cancer.</p> <p>Implications Statement</p> <p>The risk of colorectal cancer recurrence was similar in patients who were randomly assigned to 65% nitrous oxide or nitrogen during colorectal surgery.</p> <p>Trial Registration</p> <p>Current Controlled Clinical Trials NCT00781352 <url>http://www.clinicaltrials.gov</url></p
    corecore