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Early Neogene sea-level oscillations of approximately 40-60 m estimated from far-field 32 

records1,2,3 have been interpreted as requiring the loss of virtually all Antarctic ice during peak 33 

interglacials2. This contrasts with ice-sheet model experiments suggesting most terrestrial ice in 34 

East Antarctica was retained even during the warmest intervals of the middle Miocene4,5. Data 35 

and model outputs can be reconciled if a large West Antarctic Ice Sheet (WAIS) expanded 36 

across the outer continental shelf during the early Miocene, accounting for the maximum ice-37 

sheet volumes. Here, we provide geochemical and petrographic evidence from International 38 

Ocean Discovery Programme (IODP) Site U1521 showing that early Miocene glacimarine 39 

sediments (~17.72-17.40 Ma) in the central Ross Sea were clearly derived from West 40 

Antarctica. Complimentary seismic, lithological and palynological data reveal that grounded 41 

ice was intermittently proximal to the site. This is the earliest geological evidence for WAIS 42 

expansion across most of the Ross Sea shelf. Rapid deposition of nearly 190 m of sediment at 43 

Site U1521 in ~320 kyr implies unusually fast glacial erosion of West Antarctica. This interval 44 

therefore represents a key step in the genesis of a marine-based WAIS and a tipping point in 45 

Antarctic ice-sheet evolution. 46 

Introduction 47 

Reconstructing past changes to Antarctica’s ice sheets helps inform predictions of the continent’s 48 

future contribution to sea-level rise6,7. Drilling efforts around Antarctica since the 1970s have begun 49 

to reveal the Cenozoic evolution of Antarctic glaciation8,9,10,11, but fundamental steps in the 50 

development of the ice sheets remain poorly constrained. One key uncertainty is the timing of West 51 

Antarctic Ice Sheet (WAIS) expansion across the outer continental shelf. Early work on benthic 52 
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oxygen isotope records and Antarctic abyssal plain sedimentary records suggested WAIS formation 53 

did not occur until the late Miocene or early Pliocene12,13. However, more recent drilling from the 54 

Antarctic margin11,14,15 and ice-sheet modelling studies4,5,16 have raised the possibility that ice-sheet 55 

expansions into the marine realm could have occurred in the early Miocene or even earlier, 56 

facilitated by a subaerial West Antarctic topography17,18.   57 

Without widespread WAIS expansions across the continental shelf in the Early Neogene, maximum 58 

ice volumes are low enough that global sea-level fluctuations of ~40-60 m seen in far-field 59 

stratigraphic records1 and oxygen isotope-derived ice volume estimates2,3 require the near complete 60 

loss of the East Antarctic Ice Sheet (EAIS) during the warmest middle Miocene periods2. This is 61 

incompatible with current ice-sheet model outputs, which show retention of most terrestrial East 62 

Antarctic ice even during the warmest feasible middle Miocene environmental conditions4. This is 63 

mainly due to hysteresis effects driven by height-mass balance feedbacks, where the presence of the 64 

ice sheet means ice can be retained following warming beyond the point which the ice sheet would 65 

be able to form in4,19.  66 

Marine sediments, deposited on the continental shelf of the Ross Sea, can reveal whether the WAIS 67 

expanded across the continental shelf, but existing geological records are hampered by poor 68 

recovery, unconformities and/or close proximity to East Antarctica9,10,11. Seismic data show 69 

significant volumes of early Miocene glacimarine sediment deposited around the West Antarctic 70 

margin20,21,22,23, but these data require age and physical property constraints from drilling. They also 71 

lack the resolution to conclusively differentiate between sediment supply from continental-scale ice-72 

sheet expansion and local ice caps on (paleo)topographic highs22,23. Consequently, WAIS grounding 73 

across the shelf is only clear in seismic data after the cooling of the Miocene Climate Transition (~14 74 

Ma)24,25; it remains uncertain whether there were earlier WAIS expansions across the Ross Sea shelf. 75 
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 76 

Figure 1. Map of the Ross Sea region showing the outcropping regional geology26 overlain on the 77 

BedMachine Antarctica V1 modern bed topography27. IODP Site U1521 is located on the outer continental 78 

shelf of the central Ross Sea. Key locations referenced in the text are labelled, including the ANDRILL 2A 79 

(AND-2A) drill site. The white dashed line indicates the boundary between East and West Antarctic 80 

lithosphere28. Orange triangles show Cenozoic subglacial volcanic edifices detected based on morphological 81 

characteristics, gravity anomalies and magnetic anomalies29. The inset shows an ice-sheet model run using a 82 

‘cold’ climate and a mid-Miocene topography. Provenance indicators from Sequence 2 sediments at Site 83 

U1521 are broadly consistent with an ice sheet similar to or exceeding the extent of the model output pictured, 84 

which was simulated on a Mid-Miocene topography with a ‘cold’ orbit and 280 ppm CO2 climate4. 85 
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IODP Site U1521 and Provenance Approach 86 

IODP Site U1521 (75°41.0’ S, 179°40.3’ W) was drilled to 650.1 metres below sea floor (mbsf) in 87 

the Pennell Basin on the outer continental shelf of the Ross Sea in 562 m water depth (Fig. 1). The 88 

site was strategically located in a region that ice-sheet models indicate is one of the last sectors in 89 

Antarctica where ice grounds during glacial maxima, making it an ideal location to assess the timing 90 

of past maxima in ice-sheet extent and WAIS expansions onto the outer continental shelf4,16,30. The 91 

sediments from base of the hole up to 209.17 mbsf constitute an expanded early Miocene sequence 92 

(~18 to ~16.3 Ma; see Supplement for details on the age model) with 73% recovery. Individual 93 

sequences (1-4) are differentiated based on unconformities in the chronostratigraphic framework and 94 

divided further (A/B) based on major lithological boundaries. These sediments provide a unique 95 

window for detailed analysis of ice-sheet behaviour immediately before the Miocene Climate 96 

Optimum (MCO, ~17-15 Ma; Fig. 2; Fig. S1; Table S1).  97 

The sediments below 209.17 mbsf at Site U1521 are predominantly muddy to sandy diamictites, 98 

often interbedded with thin laminae and beds of mudstone (see detailed lithological descriptions in 99 

the Supplement)30. Palynological counts on 23 samples (see Supplement and Table S3) revealed 100 

sparse palynomorphs in Sequence 1 and 4A, common reworked dinoflagellate cysts in Sequence 2 101 

and evidence for high biological productivity in Sequence 3B (Fig. S8). Thus, the lithological and 102 

palaeontological data from Sequences 1, 2, 3A and 4A suggest a predominantly ice-proximal 103 

glacimarine (and potentially subglacial) setting, while data from Sequence 3B suggest an ice-distal 104 

setting. Notably, the ~190 m Sequence 2 succession, containing a high proportion of reworked 105 

dinoflagellate cysts, was deposited rapidly (~0.6 mm year-1) within a ~320 kyr interval spanning 106 

~17.72-17.40 Ma (Fig. S1).  107 

Through comparison to terrestrial rock outcrops, the marine sediments at Site U1521 were traced 108 

back to their source region. A differing geological history of the rocks beneath the EAIS and WAIS 109 

(Fig. 1) gives the sediment eroded by each ice sheet a distinct geochemical, petrological and 110 
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mineralogical composition, allowing expansions from each ice sheet to be distinguished. We applied 111 

multiple sediment provenance proxies to avoid bias towards, or omission of, any lithologies31. 112 

Specifically, we analysed the detrital fine fraction of 37 samples for neodymium (Nd) and strontium 113 

(Sr) isotope compositions (<63 µm) and 23 samples for clay mineralogy (<2 µm). Eight of these 114 

samples were processed for U-Pb dating of detrital zircons (<300 µm) and five for 40Ar/39Ar dating 115 

of detrital hornblende grains (150-300 µm). Additionally, the petrography of 15,740 clasts >2 mm 116 

was identified continuously down-core (Fig. S7). 117 

  118 

Figure 2. Selected provenance proxies from IODP Site U1521 compared to early Miocene climate records. 119 

The blue shaded section (Sequence 2) highlights the interval with sediments of predominantly West Antarctic 120 

provenance. The depth of Ross Sea Unconformity (RSU) 4a and 5 and seismic surface D-b are indicated in 121 

red23. a) Site U1521 inclination data after 20 nT demagnetisation (red points)30 and polarity interpretation 122 
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(white = reverse polarity, black = normal polarity, grey = no interpretation). b) Site U1521 lithostratigraphy. 123 

c) Chronostratigraphic sequences. The circled letters between b) and c) show the depths of the zircon U-Pb  124 

samples shown in Figure 3. d) Magnetic susceptibility measured on the whole core30. e) Neodymium isotope 125 

data (error bars are 2 S.D. external reproducibility). f) Abundance of Eocene-Oligocene dinocysts as a 126 

percentage (black) and concentration (grey). g) Dolerite clast abundance. Errors shown in f) and g) are 95% 127 

confidence intervals32. Magnetostratigraphic tie points between the polarity interpretations from shipboard 128 

data (a)30 and geomagnetic polarity timescale (h)33 are marked by purple dashed lines. i) Obliquity sensitivity, 129 

indicating the strength of obliquity in the δ18O record relative to the theoretical strength of obliquity forcing. 130 

This has been interpreted as representing the presence of marine-based Antarctic ice 15. j) Sea-level record 131 

based on an oxygen isotope splice2. Red and blue shaded intervals indicate pronounced sea-level highstands 132 

(>40 m ) and lowstands (<-20 m), respectively. MCO = Miocene Climatic Optimum. k) Compilation of CO2 133 

proxy records with a LOESS smoothing (shaded region indicates 1 sigma error), including all available 134 

proxies (phytoplankton, paleosols, boron isotopes, leaf gas exchange, stomatal frequencies and the δ13C value 135 

of terrestrial C3 plant remains). References for the CO2 compilation are provided in the methods section. k) 136 

Simplified lithological log from the AND-2A record, with diamictites differentiated based on a grounding-137 

zone proximal vs distal glacimarine depositional setting11,15.  138 
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 139 

 140 

Figure 3. a) Detrital zircon U-Pb ages displayed as kernel density estimates (KDEs). When present, large 141 

Ross Orogeny (~600-500 Ma), Triassic (~240-190 Ma) and Cretaceous (~100 Ma) age peaks are labelled. 142 

The age ranges of the Ross Orogeny, Grenville Orogeny and a ~2.7 Ga event recorded in Ross Sea 143 

sedimentary strata are illustrated using grey-shaded bars. Descending in depth, the samples midpoints are 144 

220.23, 270.03, 335.72, 373.58, 410.82, 487.40, 546.55, 588.00 and 642.21 mbsf, as shown on the lithological 145 

log in Figure 2. The same data are displayed in b) as a multi-dimensional scaling (MDS) plot calculated using 146 

the Kolmogorov–Smirnov statistic34. Stress (a measurement of the goodness of fit between the disparities and 147 

the fitted distances34) = 0.072. A MDS plot visualises the degree of similarity between each sample, with any 148 

two points plotting closer if they are more similar. The axis scales are dimensionless and have no physical 149 

meaning. Samples from Site U1521 (shaded green) are compared to previously published zircon U-Pb data 150 

(shaded grey) from Kamb, Whillans and Bindschadler ice streams in West Antarctica, as well as 151 

Transantarctic Mountain moraines from more inland and more coastal regions35,36,37. The KDEs and region of 152 

the MDS plot interpreted as having a West Antarctic provenance are shaded in blue, consistent with Figure 2. 153 
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Note that although Whillans Ice Stream drains the WAIS, it is excluded from the blue shaded area as its close 154 

proximity to the Transantarctic Mountains leads to a provenance indistinguishable from East Antarctica36.  155 

Evidence for Early Miocene WAIS Growth 156 

At Site U1521, detrital Nd values are consistently more radiogenic (higher) in Sequence 2 compared 157 

to the sediments above and below (Fig. 2), implying a contribution from a more radiogenic end 158 

member. This end member can be traced to beneath the WAIS; the Nd values, ranging between -7.2 159 

and -5.9, are in good agreement with measurements of late quaternary diamicts from the eastern Ross 160 

Sea shelf, adjacent to West Antarctica38. Here, the radiogenic end member is hypothesised to be the 161 

Cenozoic alkali volcanic rocks of Marie Byrd Land in West Antarctica38 (Fig. S3). Subaerial 162 

outcrops of the Marie Byrd Land volcanic province are limited, but magnetic and gravity anomalies 163 

associated with subglacial cone-shaped structures indicate the presence of numerous subglacial 164 

volcanoes (Fig. 1)29. These are likely to be the more radiogenic end member contributing to 165 

Sequence 2. Conversely, the less radiogenic (lower) Nd values seen in adjacent sediments, ranging 166 

between -10.2 and -8.6, reflect a mixture of lithologies present in the (East Antarctic) Transantarctic 167 

Mountains and fall within the range of late quaternary Ross Sea tills of Transantarctic Mountain 168 

provenance (Fig. S3, S6)38,39. These less radiogenic sediments also show higher and more variable 169 

magnetic susceptibility (Fig. 2)30. The patterns seen in the Nd data are broadly mirrored by detrital Sr 170 

isotope compositions (Fig. S8). 171 

Single-grain geochronology/thermochronology and clast petrography can provide more detailed 172 

insights into specific source terranes. In the Transantarctic Mountains, Precambrian rocks were 173 

affected by the pervasive Ross Orogeny (615-470 Ma), which was accompanied by extensive 174 

intrusive felsic magmatism (see Supplementary Information)40. Zircon age populations from 175 

Sequences 1, 3A and 4A show a strong peak towards the earlier part of the Ross Orogeny (595 to 176 

535 Ma) and a 6 to 21% population of Archaean and Paleoproterozoic (>1600 Ma) zircon grains 177 



10 
 

(Figs. 1, 3). These features, together with a lack of grains younger than 250 Ma, resemble moraines 178 

in the Transantarctic Mountains35,36,37. Clasts in sequences 1, 3A and 4A also correlate with rocks in 179 

the Transantarctic Mountains, with lithologies including common felsic granitoids and meta-180 

greywackes alongside rarer limestones, marbles and sandstones (Fig. S7)40. Although a relatively 181 

minor component, dolerite clasts are found throughout Sequences 1, 3A and 4A (Fig. 2g) and these 182 

are unique to the Jurassic Ferrar Group, which outcrops in the Transantarctic Mountains (Fig. 1). 183 

Furthermore, rare Protohaploxypinus pollen, a distinctive component of the Permian Beacon 184 

Supergroup sediments from the Transantarctic Mountains, are observed in Sequence 3A41. Overall, 185 

the sediments comprising Sequences 1, 3A and 4A at Site U1521 are predominantly sourced from 186 

erosion of the Transantarctic Mountains in East Antarctica. 187 

In contrast, Sequence 2, characterized by the highest Nd values, contains Cretaceous (~100 Ma) 188 

zircon U-Pb ages (n = 16; Fig. S5, Fig. 3a). Such ages are indicative of a West Antarctic provenance, 189 

as they are presently only found beneath modern Siple Coast ice streams including Kamb Ice Stream 190 

and those closer to Marie Byrd Land36,42. The age spectra from Sequence 2 share many other features 191 

with data from the Siple Coast ice streams, including a broad Triassic (~240-190 Ma) age peak, few 192 

pre-Mesoproterozoic zircons (<5 % of grains) and a young (~515-505 Ma) Ross Orogeny peak (Fig. 193 

3)36. Detrital hornblende 40Ar/39Ar ages from Sequence 2 further corroborate a West Antarctic 194 

provenance. Unlike zircon grains, which can survive multiple sedimentary cycles, hornblende grains 195 

are less resistant to weathering. The absence of Grenvillian (~1100-900 Ma) ages in the Sequence 2 196 

hornblende sample (Fig. S5) suggests a West Antarctic provenance, as Grenville-age rocks are absent 197 

there43. The scarcity of Ferrar Group dolerite clasts, common in the Transantarctic Mountains, is also 198 

consistent with a West Antarctic provenance (Figs. 1, 2). Additionally, Sequence 2 contains evidence 199 

for recycling of older marine detritus, most likely from the Early Cenozoic rift-fill strata that exist in 200 

the eastern Ross Sea region of the West Antarctic Rift System21. This is inferred from the dominance 201 

of reworked Eocene-Oligocene species in the diatom and spore-pollen assemblages29, alongside the 202 
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common (13-21%) reworked Eocene-Oligocene marine dinocysts, which are rare (<1.5%) in younger 203 

sediments (Fig. S8).  204 

Finally, the high abundance of smectite - up to 58% at the bottom of Sequence 2 ( Fig. S7, S9) – 205 

provides further evidence of a West Antarctic provenance; Quaternary sediments in the eastern Ross 206 

Sea (adjacent to West Antarctica) have a similarly high smectite content44. In addition to this 207 

evidence for a provenance shift, smectite content significantly declines up-section within Sequence 208 

2. This falling contribution is accompanied by a rise in basalt clast abundance (Fig. S9), which is 209 

unexpected given that smectite is considered a weathering product of basalt and volcanic rocks. This 210 

trend of increasing basalt clast abundances and falling basalt weathering product (i.e. smectite) is 211 

consistent with the removal of a more weathered regolith layer, followed by erosion of progressively 212 

more pristine, less weathered, continental detritus. The ~17.72 to 17.40 Ma Sequence 2 interval 213 

could therefore have seen the first advance of grounded ice over these areas of West Antarctica for 214 

an extended period. 215 

Further evidence for WAIS expansion across the shelf can be found in seismic data23. The sediment 216 

package deposited at Site U1521 between ~17.72 and 17.40 Ma can be traced across the Ross Sea 217 

continental shelf and contains widespread progradational wedges and high relief morainal 218 

banks20,21,23. Given the abundant occurrence of diamictites at Site U1521 and the glacial features 219 

distinguished in the seismic dataset, marine-terminating ice was clearly present during this interval. 220 

The seismic package is also thicker towards the eastern Ross Sea (i.e. West Antarctica)23. Taken 221 

together, the seismic data, high deposition rate, common reworked marine microfossils and 222 

provenance data revealing transport of large volumes of West Antarctic detritus as far west as the 223 

Pennell Basin in the central Ross Sea, all indicate that the early Miocene WAIS must have 224 

intermittently extended across most of the outer continental shelf.  225 

Our data therefore show that WAIS expansions across the Ross Sea continental shelf date back to at 226 

least ~17.72 Ma, prior to the Miocene Climatic Transition (~14 Ma) and significantly earlier than 227 



12 
 

previously suggested12,13,23,24,45. This ~17.72 to 17.40 Ma WAIS advance coincides with an interval 228 

of high obliquity sensitivity (Fig. 2i), supporting the use of this metric as a proxy for enhanced ice-229 

sheet sensitivity to ocean dynamics and thus marine-based ice advance15.  230 

Birth of a Marine-Based WAIS 231 

The mean erosion rate for the Ross Sea sector of the WAIS between ~17.72 and 17.40 Ma can be 232 

estimated using the volume of the corresponding seismic package east of Site U1521 (see 233 

supplementary methods)23. Assuming that, at the time of deposition, the area of the Ross Sea 234 

drainage sector of the WAIS was approximately the same as today, the inferred sediment volume 235 

requires a mean catchment erosion of approximately 90 (-30/+50) m in ~320 kyr (Table S2). The 236 

erosion rate in this interval (~0.275 mm a-1) exceeds the long-term mean rate calculated for this part 237 

of the WAIS between 23 and 14 Ma (0.012 mm a-1)18 by a factor of more than 20. This highlights the 238 

~17.72 to 17.40 Ma period as one of unusually rapid erosion, with erosion rates comparable to 239 

modern subpolar to temperate glacial catchments46. Transporting this large volume of subglacially 240 

eroded debris quickly to the WAIS margin required abundant meltwater at the ice-sheet bed47, as 241 

well as fast-flowing ice streams that extended into marine settings where broad deposition could take 242 

place. This required sufficiently cool ocean temperatures permitting the advance of marine-based ice, 243 

yet warm enough atmospheric conditions to provide sufficient precipitation to drive dynamic ice 244 

flow and enhanced basal erosion4. 245 

Since most of West Antarctica, apart from Marie Byrd Land, was thermally subsiding throughout the 246 

Miocene18, the high erosion rate at ~17.72 to 17.40 Ma is unlikely to have been driven by tectonic 247 

uplift. The eroded sediments therefore reflect a rapid lowering of the terrestrial West Antarctic 248 

hinterland and infilling of the Ross Sea basins, although we acknowledge our data cannot directly 249 

constrain topographic change. This erosive event occurred at a time when topographic 250 

reconstructions show there was a transition from a terrestrial West Antarctica (at 23 Ma) to a largely 251 
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sub-marine West Antarctica (at 14 Ma)18. The timing and large volume of sediment deposited in 252 

Sequence 2 suggests this interval must therefore record a critical step in this transition of the WAIS 253 

from a largely terrestrial ice-sheet to one that was primarily marine-based (i.e. mainly grounded 254 

below sea level). This critical change to West Antarctic topography occurred almost immediately 255 

prior to the significant changes to Antarctic cryosphere and climate seen during the MCO2,11. This 256 

suggests subglacial erosion drove changes in ice-sheet behaviour as, after ~17.40 Ma, a greater 257 

submarine area in central West Antarctica would have made the mass-balance control of the WAIS 258 

more sensitive to external drivers such as sea-level and oceanic forcing5,16. We propose that ice 259 

retreat at the onset of the MCO may be partially attributable to the crossing of this topographic 260 

tipping point and that Sequence 2 records the birth of a marine-based WAIS. We date this event to 261 

well before 14 Ma, the time slice at which topographic reconstructions first show a largely sub-262 

marine West Antarctica18. 263 

Sea-Level Reconciliation 264 

Grounded ice flowing from West Antarctica was close to Site U1521 towards the end of the early 265 

Miocene. We therefore validate recent modelling studies suggesting that an ice-sheet nucleating on a 266 

partially terrestrial West Antarctica could expand extensively into the marine realm under early 267 

Miocene climatic and paleotopographic conditions4,5,16. Our data are consistent with an ice extent 268 

similar to, or exceeding, the largest modelled early to middle Miocene Antarctic ice sheets (Fig. 1), 269 

equivalent to up to ~80 m of global average sea level depending on the reconstructed topography 270 

used4,5,16. This evidence for an expanded WAIS, containing approximately 14-15 m SLE4,16, implies 271 

the loss of nearly all terrestrial East Antarctic ice during the warmest periods of the Miocene is not 272 

required; far-field sea-level amplitudes of ~40-60 m1,2,3 allow for terrestrial ice to remain, consistent 273 

with modelled hysteresis effects4. By providing the earliest conclusive evidence for a large marine-274 
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based WAIS, our data also dispel the long-held notion that a WAIS, able to impact global eustacy 275 

and climate, was not present until ~14 Ma, or even later12,13,45.   276 
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Methods 397 

Neodymium and Strontium Isotopes 398 

Samples were disaggregated and wet sieved to isolate the <63 µm fraction, which was then dried 399 

down at 60oC. This size fraction represents the bulk composition, as samarium and neodymium are 400 

incorporated in equal proportions into most rock-forming minerals meaning grain-size sorting is not 401 

likely to impact results48,49. However, the Rb-Sr system is subject to elemental fractionation during 402 

weathering and grain-size sorting, which can influence 87Sr/86Sr ratios (see ‘Provenance Changes 403 

within Sequence 2’ section in supplement). To remove authigenic Fe-Mn oxyhydroxide phases, 404 

samples were leached in a mixture of 0.05 M hydroxylamine hydrochloride, 15% acetic acid, and 405 

0.03 M EDTA at a pH of 450. A carbonate removal step was not included due to the very low 406 

carbonate content30. Leached sediment was dried, homogenised, and 50 mg aliquots were digested on 407 

a hotplate in concentrated HF (2 mL), HClO4 (0.8 mL) and HNO3 (1 mL) for three to five days, with 408 

a subsequent 6 M HCl step. The Nd was isolated from the sample matrix using a cation exchange 409 

resin (AG50W-X8, 200-400 μm mesh) and HCl in increasing molarity, followed by a low molarity 410 

HCl Ln-Spec resin procedure (50–100 μm mesh). The sample matrix from the cation exchange step 411 

was dried down, taken up in HNO3, then loaded onto Eichrom Sr Spec resin to wash down the matrix 412 

and elute the Sr51. 413 

Neodymium isotopes were measured in the MAGIC laboratories at Imperial College London on a Nu 414 

high resolution multi-collector inductively coupled plasma mass spectrometer (HR MC-ICP-MS). To 415 

account for instrumental mass bias, isotope ratios were corrected using an exponential law and a 416 

146Nd/144Nd ratio of 0.7219. Although negligible, interference of 144Sm on 144Nd was corrected for. 417 

Bracketing standards were used to correct measured 143Nd/144Nd ratios to the commonly used JNdi-1 418 

value of 0.51211552. USGS BCR-2 rock standard was processed alongside all samples and yielded 419 

143Nd/144Nd ratios consistently within error of the published ratio of 0.512638 ± 0.00001553. Full 420 

procedural blanks for Nd ranged from 7 to 30 pg (n = 6). 143Nd/144Nd ratios are expressed using 421 
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epsilon notation (Nd), which denotes the deviation of a measured ratio from the modern Chondritic 422 

Uniform Reservoir (0.512638)54 in parts per 10,000. 423 

Strontium isotopes were measured in the MAGIC laboratories at Imperial College London on a 424 

TIMS (Thermal Ionisation Mass Spectrometer). 10% of the sample was loaded in 1 µL of 6M HCl 425 

onto degassed tungsten filaments with 1 µL of TaCl5 activator. The measured 87Sr/86Sr ratios were 426 

corrected for instrumental mass bias using an exponential law and an 88Sr/86Sr ratio of 8.375. 427 

Interference of 87Rb was corrected for using an 87Rb/85Rb ratio of 0.386. Analyses of the NIST 987 428 

standard reference material were completed every four unknowns, yielding a mean of 0.710290 ± 429 

0.000041 (2SD, n = 36). Samples were corrected to the published value of 0.710252 ± 0.00001353. 430 

The relatively poor reproducibility for our NIST 987 runs was due to technical issues, but is still 431 

more than sufficient for interpreting sample results, which change in the 3rd to 4th digit. Accuracy of 432 

results was confirmed using rock standard USGS BCR-2, processed with every batch of samples, 433 

which yielded 87Sr/86Sr ratios of 0.705010 ± 0.00029 (2SD, n = 18). This is well within error of the 434 

published value of 0.705013 ± 0.0001053. 435 

Detrital Zircon U-Pb Dating 436 

To ensure there were enough grains for statistical analysis, samples were taken over 40 cm of core. 437 

Samples were disaggregated, dried and sieved at 300 µm. Zircons from the <300 µm fraction were 438 

concentrated using standard gravity settling and magnetic separation techniques. Samples were then 439 

mounted in resin, polished and analysed using an Agilent 7900 laser ablation inductively-coupled 440 

plasma mass spectrometer (LA-ICP-MS) with a 25-35 µm pit diameter in the London 441 

Geochronology Centre at University College London. Approximately 150 grains resembling zircons 442 

were randomly selected for analysis from each sample. Plešovice zircon55 was used as a primary 443 

standard to correct for instrumental mass bias and depth-dependent inter-element fractionation. 444 

Approximate U and Th concentrations were calculated by comparison with NIST 612 glass56. 445 
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Data reduction of the time-resolved mass spectrometer data was performed using GLITTER 4.5(57). 446 

Ages younger than 1100 Ma were calculated using the 206Pb/238U ratio whilst older grains used the 447 

207Pb/206Pb ratio. Data were filtered to exclude non-zircons based on zirconium concentrations (>106 448 

counts per second) and a -5/+15% discordance threshold was applied. This yielded at least 92 grains 449 

per sample, giving a 95% confidence that any age populations comprising more than 7% of the 450 

sample will be measured58. GJ1 zircon59 was used as a secondary standard to verify accuracy of the 451 

data. Repeat analyses using zircons with and without existing ablation pits were made to check 452 

sample reproducibility; these agreed within the uncertainties associated with random sampling. Final 453 

data were processed and visualised using the R package IsoplotR60. 454 

Clast Petrography 455 

The gravel fraction (>2 mm) was characterized in continuum along the core, between 648.17 and 456 

209.17 mbsf. Clasts exposed in the cut surface of the archive half core were measured, logged and 457 

described on the basis of macroscopic features (e.g. shape, colour, texture). Logging aimed to 458 

identify the distribution and variation of the gravel-size clasts along the core length. Clast logging 459 

followed the methodologies applied to the ANDRILL and CRP records; on the basis of macroscopic 460 

features, clasts were grouped into seven main lithological groups: igneous rocks, quartz fragments, 461 

dolerites, volcanic rocks, metamorphic rocks, sedimentary rocks and sedimentary intraclasts61,62,63,64. 462 

Data processing involved counting the occurrence of each lithological group over each 10 cm core 463 

interval. The total number of clasts in each core was then divided by the core length to normalize the 464 

clast abundance, and the number of clasts for each lithological group was summarized for each core 465 

(Fig. S7). To highlight the along-core variation in dolerite and volcanic clasts - two of the most 466 

indicative lithologies for provenance constraint - the number of these clasts was divided by the total 467 

number of clasts in each core (Fig. S7). A total of 73 pebble to cobble-sized clasts were sampled for 468 
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petrographic analysis, of which the most representative of each lithological group were analysed 469 

using standard petrographic methods with polarized light microscopy. 470 

Palynology 471 

Sample processing was performed at Utrecht University, following standard techniques of the 472 

Laboratory of Palaeobotany and Palynology. Samples were oven-dried and weighed (~15 g dry 473 

weight sediment each). One Lycopodium clavatum tablet with a known amount of marker spores was 474 

added for quantification of palynomorph abundances65. 475 

Samples were treated with 10% HCl (Hydrochloric acid) and cold 38% HF (Hydrofluoric acid), then 476 

sieved over a 10 μm mesh with occasional mild ultrasonic treatment. To avoid any potential 477 

processing-related preservation bias, no oxidation or acetolysis was carried out. The processed 478 

residue was transferred to microscope slides using glycerine jelly as a mounting medium, and 2 479 

slides were analysed per sample at 400× magnification. Slides were examined for detailed marine 480 

(dinoflagellate cysts, acritarchs and other aquatic palynomorphs) and screening-level terrestrial 481 

(pollen and spore) analysis at Utrecht University, with a subsequent detailed analysis for terrestrial 482 

palynomorphs on a sub-set of seven samples undertaken at GNS Science. Of the 23 palynological 483 

samples analysed for dinocysts, two contained < 60 dinocysts (Sequence 1; 594.48 mbsf and 484 

Sequence 2; 567.75 mbsf) and one was almost barren (yielding only 12 in situ dinocysts, Sequence 485 

3A; 374.9 mbsf). The almost barren sample is excluded from all plots. The two low abundance 486 

samples are included in our dataset; however, because of the low dinocyst yield, careful 487 

interpretation is required. Samples between 594.48 and 567.75 mbsf and below 594.48 mbsf (cores 488 

65R, 67R, 69R and 71R) were also checked, but yielded few dinocyst specimens. Those present 489 

comprised of fragments of mostly reworked dinocysts.  490 

Pollen and spore identification followed taxonomic compilations66,67, augmented by key Antarctic 491 

literature68,69,70. For pollen and spores, scanning continued until an entire cover slide was completed, 492 
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or a 100 count reached. Results are presented as specimens/gram, and percentage of all terrestrial 493 

palynomorphs. Dinocysts were identified based on a taxonomical index71 and informally and 494 

formally described species in the literature72,73,74,75. Dinocyst percentages were calculated based on 495 

the total in situ dinocysts counted, excluding reworked specimens (Table S3). The percentages of 496 

other palynomorph groups such as brackish and freshwater algae (Cymatiosphaera spp. and 497 

Pediastrum spp.) and reworked dinocysts were calculated using the total palynomorphs counted (Fig. 498 

2; Fig. S8). In situ dinocyst and terrestrial palynomorph absolute abundance (specimens/g dry 499 

weight, Table S3) and the absolute abundance of the other palynomorph groups were calculated by 500 

counting the amount of Lycopodium clavatum spores encountered, following the equation of 501 

Benninghoff (1962)76.  502 

Protoperidinioid (P) dinocysts are mostly represented by the genera Brigantedinium, Lejeunecysta, 503 

and Selenopemphix. Gonyaulacoid (G) dinocysts mostly include Batiacasphaera spp., 504 

Operculodinium spp. and Spiniferites spp. Protoperidinioid cyst percentages (Heterotrophic % in Fig. 505 

S8; Table S3) and percentages of the most common species (Brigantedinium spp. Lejeunecysta spp.,  506 

Selenopemphix spp. and Selenopemphix antarctica) were calculated to identify productivity trends 507 

and/or the presence of sea ice (see Supplementary Information). P dinocysts are likely produced by 508 

heterotrophic dinoflagellates77 and, at present, dominate the assemblages in Antarctic sediments in 509 

areas with high nutrients and/or (year-round) sea-ice covered areas. At present, samples in quasi 510 

perennial sea-ice covered areas are dominated by Selenopemphix antarctica (~75%), with abundant 511 

Brigantedinium spp. and rare occurrence of other species78,79,80. G cysts are generally produced by 512 

phototrophic dinoflagellates. Operculodinium spp. is the most abundant, has species representatives 513 

among the extant cysts and has been selected to represent temperate-warm conditions. At present, it 514 

is almost exclusively found in temperate areas of the Southern Ocean, north of the Subantarctic 515 

Front78 and never occurs in the circum-Antarctic sediments, while it was found common to abundant 516 
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in other Antarctic warm Miocene records81,82. Reworked dinocysts include Eocene and Oligocene 517 

taxa (mostly Vozzhennikovia spp., but also few Spinidinium spp. and Enneadocysta diktyostila). 518 

Paleo CO2 Compilation 519 

Proxy estimates of atmospheric CO2 concentrations (Fig. 2) were obtained from the compilations on 520 

the websites paleo-co2.org and p-co2.org. Proxies include the δ13C of marine phhtoplankton83,84,85, 521 

the δ13C of paleosols86,87, boron isotope (δ11B) proxies88,89,90,91, leaf gas-exchange92, stomatal 522 

frequencies93 and the δ13C of terrestrial C3 plants94. An assessment of the validity of different proxies 523 

is beyond the scope of this paper, so all available proxies were included. The complied data are 524 

presented as a LOESS-smoothed curve through the data using the ‘loess’ function in R. The shaded 525 

region indicates 1 sigma error.  526 
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