816 research outputs found

    Multi-strand coronal loop model and filter-ratio analysis

    Get PDF
    We model a coronal loop as a bundle of seven separate strands or filaments. Each of the loop strands used in this model can independently be heated (near their left footpoints) by Alfv\'en/ion-cyclotron waves via wave-particle interactions. The Alfv\'en waves are assumed to penetrate the strands from their footpoints, at which we consider different wave energy inputs. As a result, the loop strands can have different heating profiles, and the differential heating can lead to a varying cross-field temperature in the total coronal loop. The simulation of TRACE observations by means of this loop model implies two uniform temperatures along the loop length, one inferred from the 171:195 filter ratio and the other from the 171:284 ratio. The reproduced flat temperature profiles are consistent with those inferred from the observed EUV coronal loops. According to our model, the flat temperature profile is a consequence of the coronal loop consisting of filaments, which have different temperatures but almost similar emission measures in the cross-field direction. Furthermore, when we assume certain errors in the simulated loop emissions (e.g., due to photometric uncertainties in the TRACE filters) and use the triple-filter analysis, our simulated loop conditions become consistent with those of an isothermal plasma. This implies that the use of TRACE/EIT triple filters for observation of a warm coronal loop may not help in determining whether the cross-field isothermal assumption is satisfied or not

    Multi-strand coronal loop model and filter-ratio analysis

    Full text link
    We model a coronal loop as a bundle of seven separate strands or filaments. Each of the loop strands used in this model can independently be heated (near their left footpoints) by Alfv\'en/ion-cyclotron waves via wave-particle interactions. The Alfv\'en waves are assumed to penetrate the strands from their footpoints, at which we consider different wave energy inputs. As a result, the loop strands can have different heating profiles, and the differential heating can lead to a varying cross-field temperature in the total coronal loop. The simulation of TRACE observations by means of this loop model implies two uniform temperatures along the loop length, one inferred from the 171:195 filter ratio and the other from the 171:284 ratio. The reproduced flat temperature profiles are consistent with those inferred from the observed EUV coronal loops. According to our model, the flat temperature profile is a consequence of the coronal loop consisting of filaments, which have different temperatures but almost similar emission measures in the cross-field direction. Furthermore, when we assume certain errors in the simulated loop emissions (e.g., due to photometric uncertainties in the TRACE filters) and use the triple-filter analysis, our simulated loop conditions become consistent with those of an isothermal plasma. This implies that the use of TRACE/EIT triple filters for observation of a warm coronal loop may not help in determining whether the cross-field isothermal assumption is satisfied or not

    Spectroscopic Observations of Propagating Disturbances in a Polar Coronal Hole: Evidence of Slow Magneto-acoustic Waves

    Full text link
    We focus on detecting and studying quasi-periodic propagating features that have been interpreted both in terms of slow magneto-acoustic waves and of high speed upflows. We analyze long duration spectroscopic observations of the on-disk part of the south polar coronal hole taken on 1997 February 25 by the SUMER spectrometer aboard SOHO. We calibrated the velocity with respect to the off-limb region and obtain time--distance maps in intensity, Doppler velocity and line width. We also perform a cross correlation analysis on different time series curves at different latitudes. We study average spectral line profiles at the roots of propagating disturbances and along the propagating ridges, and perform a red-blue asymmetry analysis. We find the clear presence of propagating disturbances in intensity and Doppler velocity with a projected propagation speed of about 60±4.860\pm 4.8 km s1^{-1} and a periodicity of \approx14.5 min. To our knowledge, this is the first simultaneous detection of propagating disturbances in intensity as well as in Doppler velocity in a coronal hole. During the propagation, an intensity enhancement is associated with a blue-shifted Doppler velocity. These disturbances are clearly seen in intensity also at higher latitudes (i.e. closer to the limb), while disturbances in Doppler velocity becomes faint there. The spectral line profiles averaged along the propagating ridges are found to be symmetric, to be well fitted by a single Gaussian, and have no noticeable red-blue asymmetry. Based on our analysis, we interpret these disturbances in terms of propagating slow magneto-acoustic waves.Comment: accepted for publication by A&

    Upflows in the upper transition region of the quiet Sun

    Full text link
    We investigate the physical meaning of the prominent blue shifts of Ne VIII, which is observed to be associated with quiet-Sun network junctions (boundary intersections), through data analyses combining force-free-field extrapolations with EUV spectroscopic observations. For a middle-latitude region, we reconstruct the magnetic funnel structure in a sub-region showing faint emission in EIT-Fe 195. This funnel appears to consist of several smaller funnels that originate from network lanes, expand with height and finally merge into a single wide open-field region. However, the large blue shifts of Ne VIII are generally not associated with open fields, but seem to be associated with the legs of closed magnetic loops. Moreover, in most cases significant upflows are found in both of the funnel-shaped loop legs. These quasi-steady upflows are regarded as signatures of mass supply to the coronal loops rather than the solar wind. Our observational result also reveals that in many cases the upflows in the upper transition region (TR) and the downflows in the middle TR are not fully cospatial. Based on these new observational results, we suggest different TR structures in coronal holes and in the quiet Sun.Comment: 4 pages, 4 figures, will appear in the Proceedings of the Solar wind 12 conferenc

    Kinetic Signatures and Intermittent Turbulence in the Solar Wind Plasma

    Full text link
    A connection between kinetic processes and intermittent turbulence is observed in the solar wind plasma using measurements from the Wind spacecraft at 1 AU. In particular, kinetic effects such as temperature anisotropy and plasma heating are concentrated near coherent structures, such as current sheets, which are non-uniformly distributed in space. Furthermore, these coherent structures are preferentially found in plasma unstable to the mirror and firehose instabilities. The inhomogeneous heating in these regions, which is present in both the magnetic field parallel and perpendicular temperature components, results in protons at least 3-4 times hotter than under typical stable plasma conditions. These results offer a new understanding of kinetic processes in a turbulent regime, where linear Vlasov theory is not sufficient to explain the inhomogeneous plasma dynamics operating near non-Gaussian structures.Comment: 4 pages, 3 figures, submitted to Physical Review Letter

    Understanding Needs Embodiment: A Theory-Guided Reanalysis of the Role of Metaphors and Analogies in Understanding Science

    Get PDF
    Many authors stress the importance of basing teaching on students' prior knowledge. To build a bridge between students' everyday knowledge and scientific concepts, the role of metaphors and analogies came into the focus of the science education community during the past two decades. Approaches using metaphor-based teaching strategies often regard metaphors and analogies as teaching tools that can be adopted by a teacher. On the basis of the theoretical framework of experientialism, we argue that not only teaching but also thinking about and understanding science without metaphors and analogies is not possible. An analysis of studies dealing with metaphors and analogies in science education shows that instructional analogies and metaphors are often not understood as intended or not used by students in their own explanations. By reanalyzing 199 instructional metaphors and analogies on the basis of a metaphor analysis, we show that it takes more than making a connection to everyday life to communicate science fruitfully. We show that good instructional metaphors and analogies need embodied sources. These embodied sources are everyday experiences conceptualized in, for example, schemata such as containers, paths, balances, and up and down. For the analysis, we introduce the concept of conceptual metaphors for analyzing metaphors as well as analogies

    COMPARISON OF ORTHODOX WITH FIBREOPTIC OROTRACHEAL INTUBATION UNDER TOTAL I.V. ANAESTHESIA

    Get PDF
    Fibreoptic orotracheal intubation was compared with orthodox laryngoscopy and tracheal intubation using a total i.v. technique with propofol in 60 ASA I and II patients. There was no significant difference between the two techniques in haemodynamic profile (before, during and following the intubation procedure) and incidence of postoperative sore throat. Minimal oxygen saturation was 96% during the study; maximal end-tidal PCO2 after intubation was 5.4 kPa. Intubation time was faster (P < 0.01) in the orthodox group (30.7 (SEM 2.3) s) than in the fibreoptic group (52.7 (4.8) s

    Rank-ordered Multifractal Spectrum for Intermittent Fluctuations

    Full text link
    We describe a new method that is both physically explicable and quantitatively accurate in describing the multifractal characteristics of intermittent events based on groupings of rank-ordered fluctuations. The generic nature of such rank-ordered spectrum leads it to a natural connection with the concept of one-parameter scaling for monofractals. We demonstrate this technique using results obtained from a 2D MHD simulation. The calculated spectrum suggests a crossover from the near Gaussian characteristics of small amplitude fluctuations to the extreme intermittent state of large rare events.Comment: 4 pages, 5 figure

    Temperature anisotropy and differential streaming of solar wind ions -- Correlations with transverse fluctuations

    Full text link
    We study correlations of the temperature ratio (which is an indicator for perpendicular ion heating) and the differential flow of the alpha particles with the power of transverse fluctuations that have wave numbers between 0.01 and 0.1 (normalized to kp=1/lpk_p=1/l_p, where lpl_p is the proton inertial length). We found that both the normalized differential ion speed, Vαp/VAV_{\alpha p}/V_\mathrm{A} (where VAV_\mathrm{A} is the Alfv\'en speed) and the proton temperature anisotropy, Tp/TpT_{\perp p}/T_{\parallel p}, increase when the relative wave power is growing. Furthermore, if the normalized differential ion speed stays below 0.5, the alpha-particle temperature anisotropy, Tα/TαT_{\perp \alpha}/T_{\parallel \alpha}, correlates positively with the relative power of the transverse fluctuations. However, if Vαp/VAV_{\alpha p}/V_\mathrm{A} is higher than 0.6, then the alpha-particle temperature anisotropy tends to become lower and attain even values below unity despite the presence of transverse fluctuations of relatively high amplitudes. Our findings appear to be consistent with the expectations from kinetic theory for the resonant interaction of the ions with Alfv\'en/ion-cyclotron waves and the resulting wave dissipation.Comment: 5 pages, 4 figures, accepted for publication in Astronomy and Astrophysics journa
    corecore