176 research outputs found

    Ab Initio Molecular Dynamics Approach to Quantitative Description of Ion Pairing in Water

    Get PDF
    Ion pairing of lithium and fluoride in water is described quantitatively using ab initio molecular dynamics simulations. We design a reliable computational protocol for evaluating the ion-ion potential of mean force using density functional based simulation methods. By comparison to classical molecular dynamics with empirical force fields we establish the statistical error of the procedure. We also check the accuracy of the electronic structure description by comparison to experimental structural data and to higher level calculations for model systems. The present approach not only points to deficiencies in force field calculations of potentials of mean force for difficult cases of high charge density ions like the aqueous lithium fluoride pair, but also allows extracting electronic information, such as the amount of charge transfer to solvent and its dependence on the ion-ion distance

    Peptide salt bridge stability: From gas phase via microhydration to bulk water simulations

    Get PDF
    The salt bridge formation and stability in the terminated lysine-glutamate dipep- tide is investigated in water clusters of increasing size up to the limit of bulk water. Proton transfer dynamics between the acidic and basic side chains is described by DFT-based Born-Oppenheimer molecular dynamics simulations. While the desol- vated peptide prefers to be in its neutral state, already the addition of a single water molecule can trigger proton transfer from the glutamate side chain to the lysine side chain, leading to a zwitterionic salt bridge state. Upon adding more water molecules we find that stabilization of the zwitterionic state critically depends on the number of hydrogen bonds between side chain termini, the water molecules, and the peptidic backbone. Employing classical molecular dynamics simulations for larger clusters, we observed that the salt bridge is weakened upon additional hydration. Consequently, long-lived solvent shared ion pairs are observed for about 30 water molecules while solvent separated ion pairs are found when at least 40 or more water molecules hy- drate the dipeptide. These results have implications for the formation and stability of salt bridges at partially dehydrated surfaces of aqueous proteins

    Dynamics of Electron Localization in Warm vs. Cold Water Clusters

    Get PDF
    The process of electron localization on a cluster of 32 water molecules at 20, 50, and 300~K is unraveled using ab initio molecular dynamics simulations. In warm, liquid clusters, the excess electron relaxes from an initial diffuse and weakly bound structure to an equilibrated, strongly bound species within 1.5 ps. In contrast, on cold, glassy clusters the relaxation processes is not completed and the electron becomes trapped in a metastable surface state with an intermediate binding energy. These results question the validity of extrapolations of the properties of solvated electrons from cold clusters of increasing size to the liquid bulk

    Dynamic inundation simulation of storm water interaction between sewer system and overland flows

    Get PDF
    Copyright © 2002 Taylor & FrancisThis is the Author's Accepted Manuscript of an article published in the Journal of the Chinese Institute of Engineers (2002), available online at: http://www.tandfonline.com/10.1080/02533839.2002.9670691An improved urban inundation model, coupling a 2D non‐inertia overland flow model with a storm water management model, is adopted to simulate inundation in urban areas. The model computes, not only the overland runoff and the water overflow through manholes where surface runoff exceeds the capacity of storm sewers, but also the bidirectional flow interactions between sewers and overland runoff. The model was verified by a typhoon event in Nov. 2000, which resulted in serious inundation in the Mucha area of Taipei City. The result shows that the present model indeed improves simulation accuracy over the earlier model, and can be used to provide a more reliable flood mitigation design

    The German Aerospace Center M-42 radiation detector—A new development for applications in mixed radiation fields

    Get PDF
    In the last few years, the Biophysics Working Group of the Institute of Aerospace Medicine of the German Aerospace Center (DLR) started the development of a small low power consumption radiation detector system for the measurement of the absorbed dose to be applied in various environments, such as onboard aircraft, in space, and also as a demonstration tool for students. These so called DLR M-42 detectors are based on an electronics design, which can easily be adjusted to the user- and mission-requirements. M-42 systems were already applied for measurements in airplanes, during two MAPHEUS (Materialphysikalische Experimente unter Schwerelosigkeit) rocket missions, and are currently prepared for long term balloon experiments. In addition, they will be part of the dosimetry suite of the upcoming Matroshka AstroRad Radiation Experiment on the NASA Artemis I mission. This paper gives an overview of the design and the testing of the DLR M-42 systems and provides highlighted results from the MAPHEUS campaigns where the detectors were tested for the first time under space flight conditions. Results clearly show that the system design enables independent measurements starting upon rocket launch due to the built-in accelerometer sensors and provides data for the relevant 6 min of μ-gravity as given for the MAPHEUS missions. These 6 min of the μ-gravity environment at altitudes between 100 and 240 km lead to a total absorbed dose of 1.21 ± 0.15 μGy being equivalent to half a day of radiation background measured with the M-42 in the laboratory at DLR, Cologne, Germany

    A practical and user-friendly toxicity classification system with microbiotests for natural waters and wastewaters

    Get PDF
    Various types of toxicity classification systems have been elaborated by scientists in different countries, with the aim of attributing a hazard score to polluted environments or toxic waste-waters or of ranking them in accordance with increasing levels of toxicity. All these systems are based on batteries of standard acute toxicity tests (several of them including chronic assays as well) and are therefore dependent on the culturing and maintenance of live stocks of test organisms. Most systems require performance of the bioassays; on dilution series of the original samples, for subsequent calculation of L(E C50 or threshold toxicity values. Given the complexity and costs of these toxicity measurements, they can only be applied in well-equipped and highly specialized laboratories, and none of the classification methods so far has found general acceptance at the international level. The development of microbiotests that are independent of continuous culturing of live organisms has stimulated international collaboration. Coordinated at Ghent University, Belgium, collaboration by research groups from 10 countries in central and eastern Europe resulted in an alternative toxicity classification system that was easier to apply and substantially more cost effective than any of the earlier methods. This new system was developed and applied in the framework of a cooperation agreement between the Flemish community in Belgium and central and eastern Europe. The toxicity classification system is based on a battery of (culture-independent) microbiotests and is particularly suited for routine monitoring. It indeed only requires testing on undiluted samples of natural waters or wastewaters discharged into the aquatic environment, except for wastewaters that demonstrate more than 50% effect. The scoring system ranks the waters or wastewaters in 5 classes of increasing hazard/toxicity, with calculation of a weight factor for the concerned hazard/toxicity class. The new classification system was applied during 2000 by the participating laboratories on samples of river water, groundwaters, drinking waters, mine waters, sediment pore waters, industrial effluents, soil leachates, and waste dump leachates and was found to be easy to apply and reliable. © 2003 Wiley Periodicals, Inc

    Theoretical Studies of Spectroscopy and Dynamics of Hydrated Electrons.

    Get PDF
    corecore