Dynamics of Electron Localization in Warm vs. Cold Water Clusters

Ondrej Marsalek, ${ }^{1}$ Frank Uhlig, ${ }^{2}$ Tomaso Frigato, ${ }^{3}$ Burkhard Schmidt, ${ }^{3}$ and Pavel Jungwirth ${ }^{1, *}$
${ }^{1}$ Institute of Organic Chemistry and Biochemistry,
Academy of Sciences of the Czech Republic and Center for Biomolecules and Complex Molecular Systems, Flemingovo nám. 2, CZ-16610 Prague 6, Czech Republic
${ }^{2}$ Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Linnéstraße 2, D-04103 Leipzig, Germany
${ }^{3}$ Institut für Mathematik, Freie Universität Berlin, Arnimallee 6, D-14195 Berlin, Germany

(Dated: March 4, 2010)

Abstract

The process of electron localization on a cluster of 32 water molecules at 20,50 , and 300 K is unraveled using ab initio molecular dynamics simulations. In warm, liquid clusters, the excess electron relaxes from an initial diffuse and weakly bound structure to an equilibrated, strongly bound species within 1.5 ps . In contrast, on cold, glassy clusters the relaxation processes is not completed and the electron becomes trapped in a metastable surface state with an intermediate binding energy. These results question the validity of extrapolations of the properties of solvated electrons from cold clusters of increasing size to the liquid bulk.

PACS numbers: $31.15 . \mathrm{es}, 31.70 . \mathrm{Dk}, 33.15 . \mathrm{Ry}, 33.80 . \mathrm{Eh}, 36.40 . \mathrm{Wa}, 36.40 . \mathrm{Mr}, 82.50 . \mathrm{Hp}$

Interaction of ionizing radiation with water leads to 47 formation of a quasi-free electron and a partially delocal- 48 ized cationic hole. Both of these species undergo ultrafast ${ }_{49}$ reactive dynamics. $\mathrm{H}_{2} \mathrm{O}^{+}$reacts on a 100 fs timescale ${ }_{50}$ with a neighboring water molecule forming $\mathrm{H}_{3} \mathrm{O}^{+}$and 51 $\mathrm{OH}[1,2]$. The latter is a key radical involved in indirect 52 radiation damage of DNA. In this process, the quasi-free ${ }_{53}$ electron also plays a role [1, 3], however, the aqueous ${ }_{54}$ environment causes its localization and formation of a ${ }_{55}^{54}$ solvated electron on a picosecond timescale [4, 5]. De- ${ }_{56}{ }^{55}$ pending on water purity, solvated electrons survive for ${ }_{57}^{56}$ up to microseconds or milliseconds before reacting with ${ }_{58}^{58}$ salt ions, dissolved oxygen molecules, OH radicals, pro- ${ }_{59}{ }^{59}$ tons, or water molecules themselves [1, 6-10]. These are ${ }_{60}$ fundamental reactions in radiation chemistry, which are ${ }_{61}^{60}$ important, among others, in nuclear waste treatment [1]. ${ }_{62}$

A very detailed molecular insight into the structure ${ }^{63}$ of an electron in aqueous environment has been gained ${ }^{64}$ from cluster studies. Both experiments and calculations 65 show that the character of this species changes from a ${ }_{66}$ weakly (dipole) bound electron in small water clusters to 67 a more bulk-like solvated electron in larger clusters [11-68 19]. This behavior has been utilized for extrapolating the 69 binding energy and other properties of the electron from 70 clusters of increasing size into the aqueous bulk [12, 20]. 71 These extrapolations are, however, not free of contradic- 72 tions, which concern the occurrence of several isomers ${ }_{73}$ and electron binding motifs, as well as surface vs inte- 74 rior location of the electron in water clusters of different ${ }_{75}$ sizes $[12,14,19]$. A crucial issue, which has gained more ${ }_{76}$ attention recently $[15,21]$ and will be addressed in this 77 study, is the fact that extrapolations to liquid water are ${ }_{78}$ done using clusters at very low (typically below 100 K) 79 temperatures. Under these conditions, clusters with tens 80 to hundreds of water molecules are unlikely to be liquid, 81 but rather resemble amorphous solids [22]. In such a 82 glassy state, translational motion is dramatically slowed 83
down. Therefore, kinetically trapped electron-cluster geometries which depend on preparation conditions, rather than fully relaxed structures, can prevail in the experiment $[12,15]$. Measurements and simulations show that the observed state sensitively depends on the history of the cluster both before and after electron attachment [15, 21].

Here, we address the question of electron localization on medium-size water clusters at warm vs cold conditions using ab initio molecular dynamics (AIMD) simulations. Initially, an electron is vertically (i.e., without any geometry change) attached to a neutral cluster comprising 32 water molecules and its subsequent dynamics is followed at cluster temperatures ranging from 20 to 300 K . We show below that the resulting localization process dramatically depends on temperature, which puts a question mark over extrapolations from cold clusters to the liquid bulk.

The computational methodology has been described in detail in our recent paper on electron-proton recombination in water [9]. Briefly, we perform AIMD using the BLYP density functional $[23,24]$ with a dispersion correction [25]. Pseudopotentials [26] replace the oxygen core electrons and the hybrid GPW scheme is used for efficient evaluation of the energies and forces [27]. The selfinteraction correction is employed for the singly-occupied orbital in a restricted open-shell Kohn-Sham framework [28]. The Kohn-Sham orbitals are represented using a TZV2P basis set [29] augmented with diffuse Gaussian functions placed on a regular grid spanning the whole simulation box. Open boundary conditions together with a suitable electrostatic solver [30] are used, as is appropriate for a cluster system. The vertical detachment energy (VDE) is calculated directly from the energy difference between the anionic and the neutral system at the same geometry. The excess electron is plotted as the unpaired spin density of the system [31]. Comparison to RIMP2

FIG. 1: Snapshots from a representative trajectory at times (a) 0 fs , (b) 950 fs , and (c) 4250 fs after the vertical attachment of the excess electron to a cluster of 32 water molecules at 300 K .
calculations suggests that the present DFT calculations 125 only slightly overestimate the VDE of the excess electron ${ }_{126}$ [31].

127
All the localization trajectories were started from the ${ }^{128}$ geometry of a neutral water cluster. For comparison, ${ }^{129}$ equilibrium trajectories were also performed, started ${ }^{130}$ with a pre-existing polarized cavity [31]. Initial geome-131 tries for localization at low temperatures were obtained ${ }^{132}$ by energy minimization, while the 300 K simulations used ${ }^{133}$ snapshots from dynamics at 300 K as their initial condi-134 tion. All production simulations are performed at con-135 stant total energy using the CP2K package [32].

136
We simulated six localization trajectories with an elec- ${ }^{137}$ tron added to a cluster of 32 water molecules equilibrated ${ }^{138}$ at 300 K . Figure 1 shows three snapshots from a repre- ${ }^{139}$ sentative trajectory, taken at 0,950 , and 4250 fs . Upon ${ }^{140}$ attachment to the neutral cluster, the excess electron is is ${ }^{141}$ initially delocalized over the outer surface of the water ${ }^{142}$ cluster (Fig. 1(a)), with a radius of gyration of about ${ }^{143}$ $6 \AA$. However, the excess electron immediately starts ${ }^{144}$ to shrink, polarizing neighboring water molecules. This ${ }^{145}$ localization process can be roughly separated into two ${ }^{146}$ steps. First, water molecules locally reorient forming ther147 initial solvation structure within less than a picosecond ${ }^{148}$ (Fig. 1(b)). The structure then becomes even more fa-149 vorable for electron binding by translational and furtheris0 rotational motion of water molecules. This process cre-151 ates a polarized cavity and moves the electron deeper ${ }^{152}$ into the cluster. Nevertheless, for most of the simulation ${ }^{153}$ time the electron remains solvated asymmetrically with ${ }_{154}$ respect to the center of the cluster, i.e., close to the sur-155 face (Fig. 1(c)). In less than 1.5 ps the electron thus ${ }^{156}$ acquires its final size of about $2.75 \AA$ and becomes in-157 distinguishable from an equilibrated solvated electron in ${ }^{158}$ a 32 water cluster, as investigated in our previous study159 [31].

160
The main physical characteristics, i.e., radius of gyra-161 tion, VDE, and average distance from the cluster center ${ }^{162}$ of mass (COM) [31] of the excess electron along the tra- ${ }^{163}$ jectory depicted in Fig. 1 are plotted in Fig. 2. The top ${ }_{164}$ panel shows the process of shrinking of the excess electron ${ }_{165}$
from its initial size of $6 \AA$ to about $5 \AA$ in less than 1 ps , and then to the final value of $\sim 2.75 \AA$ in another 0.5 ps . The middle panel depicts the VDE, the negative value of which strongly correlates with the radius of gyration of the excess electron, as observed also for the equilibrated solvated electron [31]. The initial delocalized electron is bound to the neutral water cluster by less than 1 eV , however, within 1.5 ps its vertical binding energy triples, fluctuating around its final value of about 3 eV . The last panel of Fig. 2 shows the time evolution of the average distance of the excess electron from the COM of the water cluster [31]. This distance decreases from its initial value of $6 \AA$ to about $5 \AA$. The excess electron is thus brought closer to the COM of the cluster by the localization process. Nevertheless, it remains to be situated predominantly in the interfacial region, in agreement with previous studies of an equilibrium solvated electron in a cluster of the same size $[19,31]$. Finally, note that there is little correlation between the position of the excess electron within the cluster and its vertical binding energy [31].

Time evolution of the radius of gyration of the excess electron [9] for the six simulated trajectories at 300 K is depicted in Fig. 3. Due to different geometries of the neutral clusters at the moment of electron attachment, the localization process is unique for each trajectory. Nevertheless, the feature common to all of them is that the excess electron shrinks from $\sim 6 \AA$ to roughly $2.75 \AA$ in less than 1.5 ps . For comparison, the red plot at the left hand side of Fig. 3 shows the distribution of radii of gyration of electrons attached to neutral water clusters at 200 different geometries, while the green plot at the right hand side corresponds to radii of gyration obtained from 40 ps of simulation time of an equilibrium solvated electron. Note that the initial and final distributions of radii of gyration of the localization trajectories match the former and the latter plot, despite the fact that the final distribution is taken from entirely independent simulations.

Let us now move from clusters at ambient temperature to very cold ones. Figure 4 shows the time evolution of

FIG. 2: Time evolution of the radius of gyration (top panel), vertical detachment energy (middle panel), and average distance of the excess electron from the cluster center of mass (bottom panel) for a representative localization trajectory at 300 K.

FIG. 3: Time evolution of the radius of gyration of the excess ${ }_{193}$ electron in the six localization trajectories at 300 K . Black ${ }_{194}$ curve shows the average of these trajectories. Black dots mark ${ }_{195}$ the values at $t=0 \mathrm{fs}$. Left, red: distribution of radii of gyration ${ }^{195}$ of electrons attached to neutral water clusters. Right, green: ${ }^{196}$ distribution of radii of gyration of the solvated electron in ${ }^{197}$ equilibrium trajectories.
the radius of gyration of the excess electron for clusters201 with mean temperature of 20 or 50 K , compared to those202 at 300 K . We see that upon moving from warm liquid ${ }_{203}$ to cold solid clusters the situation changes dramatically. 204 The initial (sub-picosecond) electron localization phase ${ }_{205}$ is similar for all temperatures, except that the vertical206 electron affinity at $\mathrm{t}=0$ is slightly lower in cold clus-207 ters. However, at later stages the electron on cold clus-208 ters does not localize further, but rather gets trapped209 in geometries with a radius of gyration between 4 and ${ }_{210}$ $5 \AA$ and VDE of $1.3-1.5 \mathrm{eV}$. Clearly, the initial (par-211 tial) reorientation of water molecules is feasible also in n_{212} the cold glassy clusters, but further stabilization of the ${ }_{213}$

FIG. 4: Time evolution of the radius of gyration of the excess electron in localization trajectories at 20 and 50 K . Arrows with labels show the VDE for both trajectories at the beginning (same geometry for both) and at $t=5 \mathrm{ps}$. Data for 300 K are shown for comparison (gray).
electron solvation structure by translational motion of water molecules is hindered at low temperatures. The cold clusters thus get trapped in a metastable situation about half way between the initial geometry and the equilibrated solvated electron. This trapping will persist on longer timescales than those of the present simulations (up to 15 ps). This is due to the extremely small diffusion rate in amorphous solid water, which is at least six orders of magnitude below that in liquid water [33, 34]. Therefore, the excess electron in cold clusters is likely to be kinetically trapped in metastable geometries for the micro to milisecond timescales pertinent to the experiment [12, 15].

The trapping and non-ergodic behavior in cold water clusters is further demonstrated in Fig. 5, which shows the correlation between the radius of gyration of the excess electron and its average distance from the COM of the cluster at different temperatures. Comparison to simulations of an equilibrated solvated electron at 300 K shows again the pronounced difference between localization in warm vs cold clusters. During electron localization at 300 K the system explores the same phase space region as the equilibrated electron (actually an even broader one thanks to the initially strongly delocalized geometries). In cold clusters, however, the excess electron remains localized in a narrow phase space region corresponding to large distances from the cluster center and large to medium values of the radius of gyration. Most notably, at 20 or 50 K the system never visits the region of small radii of gyration, which are characteristic for equilibrium solvated electrons, nor does it leave the outer surface of the cluster.

The present results have far-reaching consequences for attempts to extrapolate electron binding energies from cold water clusters to the liquid bulk. Experiments show

FIG. 5: Correlation between the average distance of the elec- ${ }_{262}{ }^{261}$ tron from the cluster center of mass and the radius of gyration ${ }_{263}$ of the electron. Green: data from equilibrium trajectories at ${ }_{264}$ 300 K . Black: data from the first 3 ps of the six localiza- ${ }_{265}$ tion trajectories at 300 K . Red, blue: data from localization ${ }_{266}$ trajectories at 20 and 50 K . that in such cold clusters several isomers of the excess ${ }^{270}$ electron with distinct binding energies can be found [12]. ${ }_{272}^{271}$ Our simulations support previous suggestions $[12,15,19]_{273}^{272}$ that most, if not all, of these isomers can be metastable ${ }_{274}$ structures kinetically trapped in the glassy clusters. The 275 present calculations show that in liquid clusters at ambi-276 ent conditions, which are, however, not readily accessible ${ }^{277}$ to experiment due to evaporative cooling, no such dis- ${ }_{279}^{278}$ tinct isomers exist. The electron, initially attached to a_{280}^{279} neutral system at 300 K , always relaxes within $1.5 \mathrm{ps} \mathrm{into}_{281}$ its equilibrated state. Only for this situation, extrapo-282 lation with increasing cluster size to the aqueous bulk ${ }^{283}$ would be fully justified and should provide an accurate ${ }^{284}$ value of the VDE of a solvated electron in liquid water. ${ }^{285}$
We thank Barbara Kirchner, Joost VandeVondele, ${ }_{287}^{286}$ Steve Bradforth, Bernd Winter, Katrin Siefermann, and_{288} Bernd Abel for fruitful discussions. Support from the 289 Czech Science Foundation (Grant 203/08/0114) and from ${ }^{290}$ the Czech Ministry of Education (Grant LC 512) is ${ }^{291}$ gratefully acknowledged. O.M. thanks the International ${ }^{292}$ Max Planck Research School for Dynamical Processes in ${ }_{294}^{293}$ Atoms, Molecules and Solids for support.

* Electronic address: pavel.jungwirth@uochb.cas.cz
[1] B. C. Garrett, D. A. Dixon, D. M. Camaioni, D. M. Chip-301 man, M. A. Johnson, C. D. Jonah, G. A. Kimmel, J. H. 302 Miller, T. N. Rescigno, P. J. Rossky, et al., Chem. Rev. 303 105, 355 (2005).

304
[2] P. A. Pieniazek, J. VandeVondele, P. Jungwirth, A. I. 305 Krylov, and S. E. Bradforth, J. Phys. Chem. A 112, 6159_{306} (2008).
[3] J. Simons, Acc. Chem. Res. 39, 772 (2006).
[4] P. Kambhampati, D. H. Son, T. W. Kee, and P. F. Barbara, J. Phys. Chem. A 106, 2374 (2002).
[5] V. H. Vilchiz, J. A. Kloepfer, A. C. Germaine, V. A. Lenchenkov, and S. E. Bradforth, J. Phys. Chem. A 105, 1711 (2001).
[6] E. Hart and M. Anbar, The Hydrated Electron (WileyInterscience, New York, 1970).
[7] G. V. Buxton, C. L. Greenstock, W. P. Helman, and A. B. Ross, J. Phys. Chem. Ref. Data 17, 513 (1988).
[8] R. A. Crowell and D. M. Bartels, J. Phys. Chem. 100, 17713 (1996).
[9] O. Marsalek, T. Frigato, J. VandeVondele, S. E. Bradforth, B. Schmidt, C. Schütte, and P. Jungwirth, J Phys. Chem. B 114, 915 (2010).
[10] C. G. Elles, A. E. Jailaubekov, R. A. Crowell, and S. E. Bradforth, J. Chem. Phys. 125, 044515 (2006).
[11] J. V. Coe, G. H. Lee, J. G. Eaton, S. T. Arnold, H. W. Sarkas, K. H. Bowen, C. Ludewigt, H. Haberland, and D. R. Worsnop, J. Chem. Phys. 92, 3980 (1990).
[12] J. R. R. Verlet, A. E. Bragg, A. Kammrath, O. Cheshnovsky, and D. M. Neumark, Science 307, 93 (2005).
[13] G. B. Griffin, R. M. Young, O. T. Ehrler, and D. M. Neumark, J. Chem. Phys. 131, 194302 (2009).
[14] N. I. Hammer, J.-W. Shin, J. M. Headrick, E. G. Diken, J. R. Roscioli, G. H. Weddle, and M. A. Johnson, Science 306, 675 (2004).
[15] L. Ma, K. Majer, F. Chirot, and B. von Issendorff, J. Chem. Phys. 131, 144303 (2009).
[16] R. N. Barnett, U. Landman, C. L. Cleveland, and J. Jortner, J. Chem. Phys. 88, 4429 (1988).
[17] J. Xu and K. D. Jordan, J. Phys. Chem. A 114, 1364 (2010).
[18] H. M. Lee, S. B. Suh, P. Tarakeshwar, and K. S. Kim, J. Chem. Phys. 122, 044309 (2005).
[19] L. Turi, W.-S. Sheu, and P. J. Rossky, Science 309, 914 (2005).
[20] K. R. Siefermann, Y. Liu, E. Lugovoy, O. Link, M. Faubel, and U. Buck, Nature Chemistry, in press (2010).
[21] A. Madarasz, P. J. Rossky, and L. Turi, J. Phys. Chem. A 114, 2331 (2010).
[22] V. Buch, B. Sigurd, J. Paul Devlin, U. Buck, and J. K. Kazimirski, Int. Rev. Phys. Chem. 23, 375 (2004).
[23] A. D. Becke, Phys. Rev. A 38, 3098 (1988).
[24] C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).
[25] S. Grimme, J. Comp. Chem. 27, 1787 (2006).
[26] S. Goedecker, M. Teter, and J. Hutter, Phys. Rev. B 54, 1703 (1996).
[27] G. Lippert, J. Hutter, and M. Parrinello, Mol. Phys. 92, 477 (1997).
[28] J. VandeVondele and M. Sprik, Phys. Chem. Chem. Phys. 7, 1363 (2005).
[29] J. VandeVondele and J. Hutter, J. Chem. Phys. 127, 114105 (2007).
[30] L. Genovese, T. Deutsch, and S. Goedecker, J. Chem. Phys. 127, 054704 (2007).
[31] T. Frigato, J. VandeVondele, B. Schmidt, C. Schütte, and P. Jungwirth, J. Phys. Chem. A 112, 6125 (2008).
[32] J. VandeVondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing, and J. Hutter, Comp. Phys. Comm. 167, 103 (2005).
[33] K.-H. Jung, S.-C. Park, J.-H. Kim, and H. Kang, J. Chem. Phys. 121, 2758 (2004).
[34] R. S. Smith, Z. Dohnalek, G. A. Kimmel, K. P. Stevenson, and B. D. Kay, Chem. Phys. 258, 291 (2000).

