28 research outputs found

    Expression and antiviral activity of a β-defensin-like peptide identified in the rainbow trout (Oncorhynchus mykiss) EST sequences

    Get PDF
    The in silico identification of a β-defensin-like peptide sequence (omBD-1) in the rainbow trout (Oncorhynchuss mykiss) database of salmonid EST is reported here. We have studied the transcript expression of this β-defensin-like sequence in different organs and expressed the recombinant peptide in a fish cell line. Finally, we have demonstrated the in vitro antiviral activity of the recombinant trout β-defensin-like peptide against viral haemorrhagic septicaemia rhabdovirus (VHSV), one of the most devastating viruses for worldwide aquaculture. Thus, the resistance to VHSV infection of EPC cells transfected with pMCV 1.4-omBD-1 has been shown. Since EPC cells transfected with omBD-1 produced acid and heat stable antiviral activity and up regulation of Mx, a type I IFN-mediated mechanism of antiviral action is suggested. To our knowledge, this is the first report showing biological activity of a β-defensin-like peptide from any fish

    Mytilus galloprovincialis Myticin C: A Chemotactic Molecule with Antiviral Activity and Immunoregulatory Properties

    Get PDF
    Previous research has shown that an antimicrobial peptide (AMP) of the myticin class C (Myt C) is the most abundantly expressed gene in cDNA and suppressive subtractive hybridization (SSH) libraries after immune stimulation of mussel Mytilus galloprovincialis. However, to date, the expression pattern, the antimicrobial activities and the immunomodulatory properties of the Myt C peptide have not been determined. In contrast, it is known that Myt C mRNA presents an unusual and high level of polymorphism of unidentified biological significance. Therefore, to provide a better understanding of the features of this interesting molecule, we have investigated its function using four different cloned and expressed variants of Myt C cDNA and polyclonal anti-Myt C sera. The in vivo results suggest that this AMP, mainly present in hemocytes, could be acting as an immune system modulator molecule because its overexpression was able to alter the expression of mussel immune-related genes (as the antimicrobial peptides Myticin B and Mytilin B, the C1q domain-containing protein MgC1q, and lysozyme). Moreover, the in vitro results indicate that Myt C peptides have antimicrobial and chemotactic properties. Their recombinant expression in a fish cell line conferred protection against two different fish viruses (enveloped and non-enveloped). Cell extracts from Myt C expressing fish cells were also able to attract hemocytes. All together, these results suggest that Myt C should be considered not only as an AMP but also as the first chemokine/cytokine-like molecule identified in bivalves and one of the few examples in all of the invertebrates

    Expression and antiviral activity of a β-defensin-like peptide identified in the rainbow trout (Oncorhynchus mykiss) EST sequences

    No full text
    The in silico identification of a β-defensin-like peptide sequence (omBD-1) in the rainbow trout (Oncorhynchuss mykiss) database of salmonid EST is reported here. We have studied the transcript expression of this β-defensin-like sequence in different organs and expressed the recombinant peptide in a fish cell line. Finally, we have demonstrated the in vitro antiviral activity of the recombinant trout β-defensin-like peptide against viral haemorrhagic septicaemia rhabdovirus (VHSV), one of the most devastating viruses for worldwide aquaculture. Thus, the resistance to VHSV infection of EPC cells transfected with pMCV 1.4-omBD-1 has been shown. Since EPC cells transfected with omBD-1 produced acid and heat stable antiviral activity and up regulation of Mx, a type I IFN-mediated mechanism of antiviral action is suggested. To our knowledge, this is the first report showing biological activity of a β-defensin-like peptide from any fish. © 2007 Elsevier Ltd. All rights reserved

    BACH2, a candidate risk gene for type 1 diabetes, regulates apoptosis in pancreatic β-cells via JNK1 modulation and crosstalk with the candidate gene PTPN2.

    Get PDF
    Type 1 diabetes is a chronic autoimmune disease characterized by specific destruction of pancreatic beta-cells by the immune system. Linkage and genome-wide association studies have identified more than 50 loci across the human genome associated with risk of type 1 diabetes. Recently, basic leucine zipper transcription factor 2 (BACH2) has been associated with genetic risk to develop type 1 diabetes, in an effect ascribed to the immune system. We evaluated whether BACH2 may also play a role in immune-mediated pancreatic beta-cell apoptosis. BACH2 inhibition exacerbated cytokine-induced beta-cell apoptosis in human and rodent beta-cells by the mitochondrial pathway of cell death, whereas BACH2 overexpression had protective effects. BACH2 silencing and exposure to proinflammatory cytokines increased phosphorylation of the proapoptotic protein JNK1 by upregulation of mitogen-activated protein kinase kinase 7 (MKK7) and downregulation of PTPN2. JNK1 increased phosphorylation of the proapoptotic protein BIM, and both JNK1 and BIM knockdown protected beta-cells against cytokine-induced apoptosis in BACH2-silenced cells. The present findings suggest that the type 1 diabetes candidate gene BACH2 regulates proinflammatory cytokine-induced apoptotic pathways in pancreatic beta-cells by crosstalk with another candidate gene, PTPN2, and activation of JNK1 and BIM. This clarifies an unexpected and relevant mechanism by which BACH2 may contribute to diabetes

    Sulfation of nod factors via nodHPQ is nodD-independent in R.tropici CIAT899

    No full text
    9 pages, 5 figures, 2 tables, 59 references.A cosmid from the Rhizobium tropici CIAT899 symbiotic plasmid, containing most of the nodulation genes described in this strain, has been isolated. Although this cosmid does not carry a nodD gene, it confers ability to heterologous Rhizobium spp. to nodulate R. tropici hosts (Phaseolus vulgaris, Macroptilium atropurpureum, and Leucaena leucocephala). The observed phenotype is due to constitutive expression of the nodABCSUIJ operon, which has lost its regulatory region and is expressed from a promoter present in the cloning vector. Thin-layer chromatography (TLC) analysis of the Nod factors produced by this construction shows that it is still capable of synthesizing sulfated compounds, suggesting that the nodHPQ genes are organized as an operon that is transcribed in a nodDindependent manner and is not regulated by flavonoids. Se ha aislado un cósmido del plásmido simbiótico de Rhizobium tropici CIAT899 que contiene la mayoría de los genes de nodulación descrito para esta estirpe, menos el gen regulador nodD. La introducción de este cósmido en una estirpe curada del plásmido simbiótico de R. tropici CIAT899 permite la nodulación en las plantas ensayadas (Phaseolus vulgaris, Macroptilium atropurpureum, y Leucaena leucocephala). El fenotipo observado se debe a la expresión constitutiva del operón nodABCSUIJ bajo el promotor del gen de resistencia a la kanamicina, que lleva el vector donde se ha clonado el fragmento de ADN. Análisis por cromatografia de capa fina demuestran que esta construcción es capaz de sulfatar el extremo reductor del factor Nod. Estas evidencias sugieren que los genes nodHPQ constituyen un operón, y que su expresión es independiente del gen regulador nodD.This work was supported by grants from CICYT, Spain (BIO93-0716-C04-01), from the Instituto de Cooperación Iberoamericano (Ministerio de Educación y Ciencia, Spain), and partially by IN202595 DGAPA/UNAM grant and by N-9608 from CONACyT, Mexico, to C. Q. J. F. M. was supported by an I.C.I. Scholarship from the Ministerio de Asuntos Exteriores, Spain, and by a D.G.A.P.A Scholarship from the U.N.A.M., Mexico.Peer Reviewe

    TYK2, a Candidate Gene for Type 1 Diabetes, Modulates Apoptosis and the Innate Immune Response in Human Pancreatic bêta-Cells.

    No full text
    Pancreatic β-cells are destroyed by an autoimmune attack in type 1 diabetes. Linkage and genome-wide association studies point to >50 loci that are associated with the disease in the human genome. Pathway analysis of candidate genes expressed in human islets identified a central role for interferon (IFN)-regulated pathways and tyrosine kinase 2 (TYK2). Polymorphisms in the TYK2 gene predicted to decrease function are associated with a decreased risk of developing type 1 diabetes. We presently evaluated whether TYK2 plays a role in human pancreatic β-cell apoptosis and production of proinflammatory mediators. TYK2-silenced human β-cells exposed to polyinosinic-polycitidilic acid (PIC) (a mimick of double-stranded RNA produced during viral infection) showed less type I IFN pathway activation and lower production of IFNα and CXCL10. These cells also had decreased expression of major histocompatibility complex (MHC) class I proteins, a hallmark of early β-cell inflammation in type 1 diabetes. Importantly, TYK2 inhibition prevented PIC-induced β-cell apoptosis via the mitochondrial pathway of cell death. The present findings suggest that TYK2 regulates apoptotic and proinflammatory pathways in pancreatic β-cells via modulation of IFNα signaling, subsequent increase in MHC class I protein, and modulation of chemokines such as CXCL10 that are important for recruitment of T cells to the islets.info:eu-repo/semantics/publishe
    corecore